
USE IMPROVE EVANGELIZE

DTrace &
DTraceToolkit, 0.96
Stefan Parvu
System Administrator
stefan.parvu@sun.com
stefanparvu14@yahoo.com

2

USE IMPROVE EVANGELIZE

License
COPYRIGHT: Copyright (c) 2007 Stefan Parvu

The contents of this file are subject to the terms of the PUBLIC DOCUMENTATION

LICENSE (PDL), Version 1.01. You may not use this file except in compliance with

the License

You can obtain a copy of the license at http://www.opensolaris.org/os/licensing/pdl

See the License for the specific language governing permissions and limitations under

the License

http://www.opensolaris.org/os/licensing/pdl

3

USE IMPROVE EVANGELIZE

Agenda - Day 1
● Observability, Performance and

Debugging in Solaris
– Solaris observability and debug tools

● The DTrace Framework
– An introduction to DTrace framework

– Language concepts

– DTrace methods

● DTrace Internals
● DTrace One Liners

– several examples of using DTrace

4

USE IMPROVE EVANGELIZE

Agenda - Day 2
● The Toolkit: DTraceToolkit

– An introduction to DTraceToolkit

– How to think and use the toolkit

– Real Examples

● DTrace and Java
● DTrace Community

– The DTT Team

– OpenSolaris and DTrace books

● Future

5

USE IMPROVE EVANGELIZE

Agenda - Day 1
● Observability, Performance and

Debugging in Solaris
– Solaris observability and debug tools

● The DTrace Framework
– An introduction to DTrace framework

– Language concepts

– DTrace methods

● DTrace Internals
● DTrace One Liners

– several examples of using DTrace

6

USE IMPROVE EVANGELIZE

Observability, Performance
and Debugging in Solaris

● You need tools to observe and debug different
situations like: analysing the system
performance, debugging an application or
understanding the system utilisation or
saturation, debugging a system/kernel crash

● A big number of observability and debug
utilities under Solaris

● Several areas: Process Control, Process
Statistics, Process Debugging, Kernel
Debugging and Statistics and System
Statistics

7

USE IMPROVE EVANGELIZE

Observability, Performance
and Debugging in Solaris, cont.

System Statistics
vmstat, iostat, sar, mpstat, cpustat, busstat, kstat, nfsstat, netstat, dtrace

Process Control
pgrep, pkill

pstop, prun, prctl
preap, pwait, dtrace

Process Statistics
pargs, pflags

pldd, psig
pstack, pmap
pfiles, ptree

prstat, ptree, ptime, dtrace

Process Debugging
truss
mdb

plockstat
dtrace

Kernel Debugging and Statistics
mdb
kmdb

lockstat
kstat

dtrace

8

USE IMPROVE EVANGELIZE

Observability, Performance
and Debugging in Solaris, cont.

● Some utilities are process based, some are
only inspecting certain parts of the system:
disks, virtual memory, kernel

● Under Solaris 10 new and enhanced tools:
– pfiles: adds support for filenames

– pstack: the Java frames are visible

– intrstat: reports intrerrupt statistics, based on DTrace

– plockstat: reports user level lock statistics, based on
DTrace

– dtrace: a new dynamic tracing framework

9

USE IMPROVE EVANGELIZE

Observability, Performance
and Debugging in Solaris, cont.

● DTrace framework one of the most important
and innovative things for observability and
debug

● New way to debug and observe the entire
system and understand the big picture

● Does not replace or retire other system
utilities: pstack, pmap, libumem, truss, mdb, ...

● Use the right tool for the right job
● Sometimes you find new debug tools or

improved versions under Solaris Express
builds

10

USE IMPROVE EVANGELIZE

Observability, Performance
and Debugging in Solaris, cont.

● Solaris 10 – Sun's supported distribution, free to be
used in commercial and non-commercial
environments. Support costs

● Solaris Express – Sun's official release of next
Solaris, tested and released ~ every one, two months

● Solaris Express Community Release –
Internal latest builds based on OpenSolaris,
codename: Nevada, released ~ every 2,3 weeks

● OpenSolaris – The source code for ON (OS/Net)
consolidation: the kernel (similar as kernel.org) and
user-land utilities/tools

11

USE IMPROVE EVANGELIZE

Observability, Performance
and Debugging in Solaris, cont.

● Visit http://cvs.opensolaris.org/source/
● The entire source code for ON(OS and Net)

and the userland utilities
● Examine and read the source code of certain

utilities used for debug or monitoring: vmstat,
iostat, mpstat, etc...

● DTrace framework is available as source code

http://cvs.opensolaris.org/source/

12

USE IMPROVE EVANGELIZE

Agenda - Day 1
● Observability, Performance and

Debugging in Solaris
– Solaris observability and debug tools

● The DTrace Framework
– An introduction to DTrace

– Language concepts

– DTrace methods

● DTrace Internals
● DTrace One Liners

– several examples of using DTrace

13

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

14

USE IMPROVE EVANGELIZE

DTrace Introduction
● A new powerful framework for real-time

analysis and observability. System and
process centric

● Hard to debug transient problems with:
truss(1), pstack(1), prstat(1M)

● Only mdb(1) designed for systemic problems
but only for postmortem analysis

● Designed for live production systems: a totally
safe way to inspect live data on production
systems

15

USE IMPROVE EVANGELIZE

DTrace Introduction, cont.
● Safe and comprehensive: over 30.000 data

monitoring points, inspect kernel and user
space level

● Reduced costs: solutions usually found in
minutes or hours not days or months

● Flexibility: DTrace lets you create your own
custom programs to dynamically instrument
the system

● No need to instrument your applications, no
need to stop or restart them

16

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

17

USE IMPROVE EVANGELIZE

Probes
● Programmable sensors placed all over your

Solaris system
● A probe fires when the event happens
● The anatomy of a generic D script or the

general form of a probe clause:

probe descriptionprobe description
/predicatepredicate/
{
 actionsactions
}

18

USE IMPROVE EVANGELIZE

Probes, cont.
● A D program consists of one or more probe

clauses
● Every probe has two names: a unique ID and

a string name
● When the probe fires certain actions are

executed only if the predicate expression is
true

● Any directives found outside probe clauses
are defined as declarations

19

USE IMPROVE EVANGELIZE

Probes, cont.
● The default probes: BEGIN and END
● BEGIN: fires each time a trace request is

made
dtrace -n BEGIN

dtrace: description 'BEGIN' matched 1 probe

CPU ID FUNCTION:NAME

 0 1 :BEGIN

^C

● END: fires when the trace finishes
dtrace -n END

dtrace: description 'END' matched 1 probe

^C

CPU ID FUNCTION:NAME

 0 2 :END

20

USE IMPROVE EVANGELIZE

Probes, cont.
● A simple “Hello World” example

BEGIN

{

trace("hello, world");
exit(0);
} Remember the

generic D script ?
probe descriptionprobe description
/predicatepredicate/
{
 actionsactions
}

21

USE IMPROVE EVANGELIZE

Probes, cont.
● A point of instrumentation, made available by

a provider, which has a name
● A four-tuple uniquely identifies every probe

(provider:module:function:name)

● Module and Function: places where you want
to look

● Name: represents an entry point in that
function (eg.: entry or return)

22

USE IMPROVE EVANGELIZE

Probes, cont.
● Examples

– syscall:::

– syscall:::entry

– syscall:::return

– syscall::read:entry{ printf(“Process %d”, pid);
}

– syscall::write:entry/execname=="firefox-bin"/
{ @[probefunc] = count(); }

– sysinfo:::readch{ trace(execname); exit(0); }

– sysinfo:::writech

– io:::

23

USE IMPROVE EVANGELIZE

Providers
● A methodology for instrumenting the system
● Makes available all know probes
● Providers are offering all probes to the DTrace

framework
● DTrace framework confirms to providers when

a probe is activated
● Providers pass the control to DTrace when a

probe is enabled
● Example of certain providers: syscall, lockstat,

fbt, io, mib

24

USE IMPROVE EVANGELIZE

Providers, cont.
● syscall

– one of the most important provider

– holds the entire communication from userland to kernel
space

– every system call on the system

● proc
– handles: process, LWP creation and termination,

signaling

● sched
– CPU scheduling: why threads are sleeping, running

– used usually to compute the CPU time, which threads
are run by which CPU and for how long

25

USE IMPROVE EVANGELIZE

Providers, cont.
● io

– a better look on iostat, regarding the I/O system

– disk input and output requests

– I/O by device, process, size, filename

● mib
– counters for management information bases

– IP, IPv6, ICMP, IPSec

● profile
– time based probing at specific interval of times

– low overhead

– profile-<interval> and tick-<interval>

26

USE IMPROVE EVANGELIZE

Providers, cont.
● fbt

– Function Boundary Tracing

– entry and return points of Solaris kernel function

● vminfo
– probes specific to VM kernel system

– VM kernel statistics used in vmstat(1)

● lockstat
– locks statistic

– a better understanding of locking condition and
behavior

27

USE IMPROVE EVANGELIZE

Providers, cont.
● Examples

– syscall:::

– syscall:::entry

– syscall:::return

– syscall::read:entry{ printf(“Process %d”,
pid); }

– syscall::write:entry/execname=="firefox-bin"/
{ @[probefunc] = count(); }

– sysinfo:::readch{ trace(execname); exit(0); }

– sysinfo:::writech

– io:::

28

USE IMPROVE EVANGELIZE

Actions
● Are taken when a probe fires
● Actions are indicated by following a probe

specification with “{ action }”
● Used to record data to a DTrace buffer
● Different types of actions:

– data recording

– destructive

– special

● By default, data recording actions record data
to the principal DTrace buffer

29

USE IMPROVE EVANGELIZE

Actions, cont.
● Data Recording Actions

– trace(expression)

records the result of trace to the directed buffer
trace(pid)traces the current process id

trace(execname)traces the current application name

– printf()

traces a D expression
allows output style formatting
printf(“execname is %s”, execname);

– printa(aggregation)

used to display and format aggregations
printa(@agg1)

30

USE IMPROVE EVANGELIZE

Actions, cont.
● Data Recording Actions

– stack()

records a kernel stack trace
dtrace -n 'syscall::open:entry{stack();}'

– ustack()

records a user process stack trace
allows to inspect userland stack processes
dtrace -n 'syscall::open:entry{ustack();}' -c ls

– jstack()

similar with ustack(), used for Java
The stack depth frames is different than in ustack

31

USE IMPROVE EVANGELIZE

Actions, cont.
● Destructive Actions

- used to change the state of the system
- use with caution, it is disabled by default

Process Destructive Results

stop() Stops the process which has executed the probe
raise() Used to signal a process at a precise point during execution
copyout, copyoutstr()
system()

Kernel Destructive Results

breakpoint()
panic() Triggers a panic. Used to force a crash dump

chill()

Stops the system abd transfers the control to the kernel
debugger

A sophisticated routine to inject a short delay. Used for timings
measurements

32

USE IMPROVE EVANGELIZE

Actions, cont.
● Special Actions

- exit() - stop tracing and exits

- different other subroutines:
alloca() – allocates a n size bytes buffer

basename() - formats the path names

copyin() - creates a buffer and returns its address

copyinstr() - creates a buffer and returns its address

rand() - returns a weak pseudo-random number

strlen() - returns the length of a string in bytes

strjoin() - returns a string as a concatenation of str1 and str2

33

USE IMPROVE EVANGELIZE

Actions, cont.
● Examples

– syscall:::

– syscall:::entry

– syscall:::return

– syscall::read:entry{ printf(“Process %d”,
pid); }

– syscall::write:entry/execname=="firefox-bin"/
{ @[probefunc] = count(); }

– sysinfo:::readch{ trace(execname); exit(0); }

– sysinfo:::writech

– io:::

34

USE IMPROVE EVANGELIZE

Predicates
● Are D expressions
● Allow actions to only be taken when certain

conditions are met. A predicate has this form:
“/predicate/”

● The actions will be activated only if the value
of the predicate expression is true

● Used to filter and meet certain conditions: look
only for a process which has the pid = 1203,
match a process which has the name firefox-
bin

35

USE IMPROVE EVANGELIZE

Predicates, cont.
● Examples

– syscall:::

– syscall:::entry

– syscall:::return

– syscall::read:entry{ printf(“Process %d”,
pid); }

– syscall::write:entry/execname=="firefox-bin"/
{ @[probefunc] = count(); }

– sysinfo:::readch{ trace(execname); exit(0); }

– sysinfo:::writech

– io:::

36

USE IMPROVE EVANGELIZE

Managing Probes
● List probes

– Use dtrace(1M) and '-l' option

– For each probe the four-tuple will be displayed, probe
components are ':' separated

– List all probes:
$ dtrace -l | wc -l

39570
– List all probes offered by syscall provider:

$ dtrace -lP syscall

– List all probes offered by the ufs module:
$ dtrace -lm ufs

– List all providers:
$ dtrace -l | awk '{print $2}' | sort -u

37

USE IMPROVE EVANGELIZE

Managing Probes
– List all read function probes:

$ dtrace -l -f read

● Enabling probes
– Activate a probe by not using '-l' option

– Using the default action: indicates that the probe has
been enabled and lists: the CPU, the probe number and
name

– Enable all probes from nfs and ufs module:
$ dtrace -m nfs,ufs

– Enable all read function probes:
$ dtrace -f read

– Enable all probes from io provider:
$ dtrace -P io

38

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

39

USE IMPROVE EVANGELIZE

The D language
● A simple dynamically interpreted language

what dtrace(1M) uses
● It is like a C language with some constructs

similar with awk(1):
– Supports ANSI C operators and has support for strings

– D expressions are based on built-in variables: pid,
execname, timestamp, curthread

● No control-flow constructs: loops, if statements
● Arithmetic may only be performed on integers

in D programs, floating-point arithmetic is not
permitted in D

•

40

USE IMPROVE EVANGELIZE

The D language, cont.
● Data Types

– Integer types

char
short
int
long
long long

– Float types

float
double
long double

– String type

string

41

USE IMPROVE EVANGELIZE

The D language, cont.
● Operators

– Arithmetic Operators, similar as in ANSI C

+ - * / %
may only be performed on integer operands, or on pointers
not applicable on floats

– Relational Operators

>, >=, <, <=, ==, !=
– Logical Operators

&&, ||, ^^

– Assignment Operators, similar as in ANSI C

 =, +=, ANSI-C compliant

42

USE IMPROVE EVANGELIZE

The D language, cont.
● Variables: no need to declare them
● Scalar Variables

– represents integers, strings, pointers

– created automatically

– global variables
BEGIN

{

x = 123;
}

int x;

BEGIN

{

x = 123;
}

Global variable x

Explicit variable
declaration, not needed.
You can do this outside

probe clause

43

USE IMPROVE EVANGELIZE

The D language, cont.
● Associative Arrays

– Collection of data elements

– No predefined number of elements

– Used to simulate hashes or data dictionaries

– Very simple to use and different than a scalar array

– Defined as: name[key] = expression

e.g.: a[123,”abc”] = 456

(a is associative array: a[int, string] stores an integer)

44

USE IMPROVE EVANGELIZE

The D language, cont.
● Thread-local variables

– Variable storage to each OS thread

– When you want to enable a probe and you want each
thread to be marked

– Using the “self” identifier

– A simple example which associates a thread-local variable
called read for each thread

syscall::read:entry

{

self -> read = 1;
}

45

USE IMPROVE EVANGELIZE

The D language, cont.
● Thread-local variables used sometimes to

compute the time spent in some system calls
● A simple example:

syscall::read:entry

{

 self -> t = timestamp;

}

sycall::read:return

/self -> t != 0/

{

 printf(“%d/%d spent %d secs in read\n”, pid, tid, timestamp –
t);

}

46

USE IMPROVE EVANGELIZE

The D language, cont.
● Clause-Local Variables

– Their storage is reused for each program clause

– Similar to automatic variables in a C, C++, or Java
language

– Are created on their first assignment

– Can be referenced and assigned by applying the ->
operator to the special identifier this
BEGIN
{
 this->secs = timestamp / 1000000000;
 ...
}

47

USE IMPROVE EVANGELIZE

The D language, cont.
● Built-in Variables

– pid: the current process ID

– execname: the current executable name

– timestamp: the time since boot, in nanoseconds

– curthread: the current thread

– probeprov, probemod, probefunc and probename
identify the current probe

● External Variables
– used in some other parts: OS, kernel modules. e.g:

`kmem_flags, `physmem

48

USE IMPROVE EVANGELIZE

The D language, cont.
● Scripting in D
● Easy to create D scripts to hold one or more

probe clauses
● Run the scripts as any other shell script on the

system. Make sure the script has the
executable bits on

49

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

50

USE IMPROVE EVANGELIZE

Aggregations
● Used to aggregate data and look for trends
● Simple to generate reports about: total system

calls used by a process or an application, the
total number of read or writes by process...

● Has the general form:
@name[keys] = aggfunc(args)@name[keys] = aggfunc(args)

● There is no need to use other tools like:
awk(1), perl(1)

● The general definition of aggregating function:
f(f(x0)  f(x1)  ...  f(xn)) = f(x0  x1  ...  xn)

51

USE IMPROVE EVANGELIZE

Aggregations
● Aggregating functions

– count() : the number of times called, used to count for
instance the total number of reads or system calls

– sum() : the total value of the specified expressions

– avg() : the arithmetic average of the specified
expression

– min() : the smallest value of the specified expression

– max(): the largest value of the specified expression

– quantize() : a power-of-two frequency distribution,
simple to use to draw distributions

● Non-aggregating functions
– mode and median

52

USE IMPROVE EVANGELIZE

Aggregations, cont.
● What's going on with my system ?

dtrace -n syscall:::entry

● Difficult to read, start aggregating...
dtrace -n 'syscall:::entry{@[execname] = count();}'

● Filter on read system call
dtrace -n
'syscall::read*:entry{@[execname]=count();}'

● Add the file descriptor information
dtrace -n
'syscall::read*:entry{@[execname,arg0]=count();}'

53

USE IMPROVE EVANGELIZE

Aggregations, cont.
● Drill-down and get a distribution of each read

by application name
syscall::read*:entry

{

 self ->ts=timestamp;

}

syscall::read*:return

/self -> ts/

{

 @time[execname] = quantize(timestamp – self->ts);

 self->ts = 0;

}

54

USE IMPROVE EVANGELIZE

Aggregations, cont.
● Data normalization

– used to aggregate over a specific constant reference:
e.g.: system calls per second

– normalize()

– denormalize()

● Truncate
– used to minimize the aggregation results, keep certain

top results

– trunc(aggregation, trunc value)

55

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

56

USE IMPROVE EVANGELIZE

Pointers and Arrays
● Pointers determines which location in memory

we are referencing
● Similar mechanism as in ANSI-C
● Safe access and control of pointers by DTrace
● Invalid memory access and alignment checks

BEGIN

{

 x = (int *)NULL;

 y=*x;

 trace(y);

}

57

USE IMPROVE EVANGELIZE

Pointers and Arrays, cont.
● Support for scalar arrays, similar with C/C++
● Indexed from 0, fixed length
● Sometimes used to access certain OS array

data structures
● Defined as: int a[int]

Example: int a[4]; 4 elements: a[0], a[1], a[2], a[3]

● Scalar and associative arrays
Item Predefined Size Consecutive storage order Form
Scalar Array Yes Yes int a[4]

Associative Array No No a[123,”abc”]

58

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

59

USE IMPROVE EVANGELIZE

Strings
● Support for strings in D
● Built-in data type very easy to use
● Strings constants defined between “ “
● String assignment using = operator

– Example: s = “my string”;

● String comparation using the relational
operators (<, >, <=, >=, ==, !=)
– Example: execname == “firefox-bin”

● Comparation is done byte-by-byte as in C like
in strcmp(3C) routine

60

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

61

USE IMPROVE EVANGELIZE

Structs and Unions
● Similar with ANSI-C struct and union
● Struct: easy way to create a new data type

struct identifier {
 data_type member1;
 data_type member2;
};

struct identifier variable;

● Union: similar with struct, exception is that
data members occupy the same region of
storage

62

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

63

USE IMPROVE EVANGELIZE

Output formatting
● Special routines to format the output: trace(),

printf() or printa()
● For specific output format use built-in printf()

– printf(“execname is %s”, execname);

– printf(“%d spent %d secs in read\n”,
pid, timestamp – t);

● For aggregations use printa()
– printa(“Aggregation is:”, @a);

– printa(@count);

● Basic trace()
– trace(execname);

64

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

65

USE IMPROVE EVANGELIZE

Speculative tracing
● Tentatively trace data and later commit or not

to a trace buffer
● When you cannot use a predicate condition

and don't know a probe event
● When you have an error event and would like

to know the history behind it and why that
error occurred

● Functions:
– speculation()

– speculate()

– commit()

– discard()

66

USE IMPROVE EVANGELIZE

Agenda - Day 1
● Observability, Performance and

Debugging in Solaris
– Solaris observability and debug tools

● The DTrace Framework
– An introduction to DTrace

– Language concepts

– DTrace methods

● DTrace Internals
● DTrace One Liners

– several examples of using DTrace

67

USE IMPROVE EVANGELIZE

DTrace Internals
● Compilation: D programs are compiled into a

safe intermediate form that is used for
execution when your probes fire which is
validated by DTrace

68

USE IMPROVE EVANGELIZE

DTrace Internals, cont.
● Programming mistakes: DTrace will report your

errors to you and disable your instrumentation
● Execution environment: DTrace also handles any

run-time errors: dividing by zero, dereferencing
invalid memory, and so on, and reports them to
you

● Safe: you can never construct a bad script that
would cause DTrace to damage the Solaris
kernel or one of the processes running on your
system (do not confuse sometimes bugs in
certain kernel subsystems which gets triggered
by DTrace !)

69

USE IMPROVE EVANGELIZE

DTrace Internals, cont.
● Safety one of the top priorities

– inside interpreter: in the kernel space that interprets
instructions and verifies that each pointer is safe to access
or read

– protection against memory violations – accessing a
userland memory address result in a disabled probe

– no loops, avoids the Halting Problem - “Given a description
of a program and its initial input, determine whether the
program, when executed on this input, ever halts
(completes). The alternative is that it runs forever without
halting. We say that the halting problem is undecidable
over Turing machines.”
 http://en.wikipedia.org/wiki/Halting_problem

http://en.wikipedia.org/wiki/Halting_problem

70

USE IMPROVE EVANGELIZE

DTrace Internals, cont.
● Only root allowed to run DTrace by default
● To run DTrace you must have certain

privileges:
$ ppriv -l | grep dtrace
dtrace_kernel
dtrace_proc
dtrace_user

● Enable using usermod utility
– # usermod -K
defaultpriv=basic,dtrace_kernel,\
dtrace_proc,dtrace_user username

71

USE IMPROVE EVANGELIZE

Agenda - Day 1
● Observability, Performance and

Debugging in Solaris
– Solaris observability and debug tools

● The DTrace Framework
– An introduction to DTrace

– Language concepts

– DTrace methods

● DTrace Internals
● DTrace One Liners

– several examples of using DTrace

72

USE IMPROVE EVANGELIZE

DTrace One Liners
● System Calls Count by Application

$ dtrace -n 'syscall:::entry{@[execname] =
count();}'

● System Calls Count by Application and Process
$ dtrace -n 'syscall:::entry{@[execname,pid]
= count();}'

● How many times a file has been opened
$ dtrace -n
'syscall::open:entry{@[copyinstr(arg0)] =
count();}'

73

USE IMPROVE EVANGELIZE

DTrace One Liners
● Files Opened by process

$ dtrace -qn
'syscall::open*:entry{ printf("%s
%s\n",execname,copyinstr(arg0)); }'

● Read Bytes by process
$ dtrace -n 'sysinfo:::readch{ @[execname] =
sum(arg0);}'

● Write Bytes by process
$ dtrace -n 'sysinfo:::writech{ @[execname]
= sum(arg0);}'

74

USE IMPROVE EVANGELIZE

DTrace One Liners, cont.
● How big a read is

$ dtrace -n 'syscall::read:entry{@[execname]
= quantize(arg2);}'

● How big a write is
$ dtrace -n
'syscall::write:entry{@[execname] =
quantize(arg2);}'

● Disk size by process
$ dtrace -qn 'io:::start{printf("%d %s
%d\n",pid,execname,args[0]->b_bcount); }'

75

USE IMPROVE EVANGELIZE

DTrace One Liners, cont.
● High system time

$ dtrace -n profile-501'{@[stack()] =
count()}END{trunc(@, 25)}'

● What processes are using fork
$ dtrace -n 'syscall::fork*:entry{printf("%s
%d",execname,pid);}'

76

USE IMPROVE EVANGELIZE

Top vs Prstat
● A real case using DTrace to analyse how

much CPU top and prstat are using. Which
one is better to run in your production
servers ?

● Both tools used to monitor the performance of
the system, in particular the process activity

● Remember: top is not part of Solaris. Install top
from http://blastwave.org

● prstat(1M) reports active process statistics,
similar with top but smarter. Part of Solaris 8+

● All measurements have been registered using
a Dual Core AMD X2 4800+ !

http://blastwave.org/

77

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● Urban legends !?

– Is top really a CPU hog application ?

– There are many stories on net about SysAdmins which
are never using top because they consider the
application being CPU hog

– Stories about using top on production env with
performance penalties

– Other folks are saying top is smarter, lighter and works
similar as in other OSes: Linux, BSD* etc, no
performance issues using top

– A lot of confusion over this topic

● DTrace will help us to measure how much
CPU top really uses comparing with prstat

78

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● top

79

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● prstat

80

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● Run top and prstat: interval 1sec x 10 times
● Record the number of system calls for top and

prstat during the execution
● Use an aggregation like below:

– dtrace -n 'syscall:::entry/execname == "prstat"/
{ @num[probefunc] = count(); }'

– dtrace -n 'syscall:::entry/execname == "top"/
{ @num[probefunc] = count(); }'

● Compare the results

81

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● Total system calls for top

82

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● Total system calls for prstat

83

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● At this moment we know that top uses more

system calls than prstat
● top seems to open, read and close many files

several times. prstat does not do that
● What files top opens so many times ? What

about prstat ?
– dtrace -n 'syscall::open:entry/execname == "top"/
{ @name[copyinstr(arg0)] = count();}'

– dtrace -n 'syscall::open:entry/execname ==
"prstat"/ { @name[copyinstr(arg0)] = count();}'

● Compare the results

84

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● Opened files by top

85

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● Opened files by prstat

86

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● Partial results
● Interesting findings: top seems to open for

each update every psinfo file from /proc. This
happens 10 times (remember we started 1 sec
x 10 times)

● prstat uses a smarter method, pread. No need
to open 10 times each psinfo file, the file is
opened once

● Does the difference matter ? So what if top
uses more syscalls or opens more frequent the
psinfo files ?

87

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● Measuring the CPU overhead between prstat

and top
#!/usr/sbin/dtrace -s

syscall:::entry

/execname == $$1/

{

 self->start = vtimestamp;

}

syscall:::return

/self->start/

{

 this->time = vtimestamp - self->start;

 @Time[probefunc] = sum(this->time);

 @Time["TOTAL:"] = sum(this->time);

 self->start = 0;

}

88

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● The CPU overhead for top, ~ 60ms

● The CPU overhead for prstat, ~ 30ms

89

USE IMPROVE EVANGELIZE

Top vs Prstat, cont.
● Conclusions

– Using DTrace we were able to understand how prstat
and top works

– This was not intended to be a benchmark exercise !

– For each screen update top opens, reads and closes a
psinfo file for every process. prstat only does a read

– On very fast machines the difference is small, however
it very much depends how many processes are running.
Try to experiment with different number of processes on
different hardware

– Try to discover other similar monitoring applications like
top

90

USE IMPROVE EVANGELIZE

Agenda - Day 2
● The Toolkit: DTraceToolkit

– An introduction to DTraceToolkit

– How to think and use the toolkit

– Real Examples

● DTrace and Java
● DTrace Community

– The DTT Team

– OpenSolaris and DTrace books

● Future

91

USE IMPROVE EVANGELIZE

The toolkit: DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit elements
● Categories
● Free your mind
● Examples

92

USE IMPROVE EVANGELIZE

Introduction
● The DTraceToolkit is a collection of useful

documented scripts developed by the
OpenSolaris DTrace community built on top of
DTrace framework

● Available under www.opensolaris.org
● Ready DTrace scripts
● The toolkit contains:

– the scripts

– the man pages

– the example documentation

– the notes files

– the tutorials

http://www.opensolaris.org/

93

USE IMPROVE EVANGELIZE

Introduction, cont.

DTrace Framework

 A
p

p
lic

at
io

n
s

 C
p

u

 D
is

k

 K
er

n
el

 N
et

w
o

rk

 M
em

o
ry

 P
ro

ce
ss

es

 S
ys

te
m

 E
xt

ra
, U

se
r,

 S
ys

te
m

DTraceToolkit

Script Categories: collection
of D scripts

94

USE IMPROVE EVANGELIZE

The toolkit: DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit elements
● Categories
● Free your mind
● Examples

95

USE IMPROVE EVANGELIZE

Installation and Setup
● Download the toolkit

http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

● Installation Notes
– gunzip and "tar xvf" the file

– run ./install – default installation /opt/DTT

– read Guide to find out how to get started

– a list of scripts is in Docs/Contents

● Setup DTT
– PATH=$PATH:/opt/DTT/Bin

– MANPATH=$MANPATH:/opt/DTT/Man

 (assuming the toolkit was installed in /opt/DTT)

http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

96

USE IMPROVE EVANGELIZE

The toolkit: DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit Elements
● Categories
● Free your mind
● Examples

97

USE IMPROVE EVANGELIZE

Toolkit Elements

98

USE IMPROVE EVANGELIZE

Toolkit Elements, cont.
● Categories

– Apps – scripts for certain applications: Apache, NFS
– Cpu – scripts for measuring CPU activity
– Disk – scripts to analyse I/O activity
– Extra – other categories
– Kernel – scripts to monitor kernel activity
– Locks – scripts to analyse locks
– Mem – scripts to analyse memory and virtual memory
– Net – scripts to analyse activity of the network

interfaces, and the TCP/IP stack
– Proc – scripts to analyse activity of a process
– System – scripts to measure system wide activity
– User – scripts to monitor activity by UID
– Zones – scripts to monitor activity by zone

99

USE IMPROVE EVANGELIZE

Toolkit Elements, cont.
● Documentation

– Man/: all scripts are documented as UNIX manual pages

– Docs/: a generic place to find the documentation

– Docs/Notes/: several short guides about toolkit's
commands

– Docs/Example/: examples of command usage

– Docs/Content/: complete list of all commands

– Docs/Faq/: DTT Frequently Asked Questions

100

USE IMPROVE EVANGELIZE

The toolkit: DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit Elements
● Categories
● Free your mind
● Examples

101

USE IMPROVE EVANGELIZE

Categories
● Applications

– Used to measure and report certain metrics from
applications like: Apache Web server, NFS client, UNIX
shell

– httpdstat.d: computes real-time Apache web statistics:
the number of connections, GET, POST, HEAD and
TRACE requests

– nfswizard.d: used to measure the NFS client activity
regarding response time and file accesses

– shellsnoop: captures keystrokes, used to debug and
catch command output. Use with caution !

– weblatency.d: counts connection speed delays, DNS
lookups, proxy delays, and web server response time.
Uses by default Mozilla browser

102

USE IMPROVE EVANGELIZE

Categories, cont.
● Cpu

– Reports and list the CPU activity like: cross calls,
interrupt activity by device, time spent servicing
interrupts, CPU saturation

– cputypes.d: lists the information about CPUs: the
number of physical install CPUs, clock

– loads.d: prints the load average, similar to uptime

– intbycpu.d: prints the number of interrupts by CPU

– intoncpu.d: lists the interrupt activity by device;
example: the time consumed by the ethernet driver, or
the audio device

– inttimes.d: reports the time spent servicing the
interrupt

103

USE IMPROVE EVANGELIZE

Categories, cont.
● Cpu

– xcallsbypid.d – list the inter-processor cross-calls by
process id. The inter-process cross calls is an indicator
how much work a CPU sends to another CPU

– dispqlen.d – dispatcher queue length by CPU,
measures the CPU saturation

– cpuwalk.d – identify if a process is running on multiple
CPUs concurrently or not

– runocc.d – prints the dispatcher run queue, a good
way to measure CPU saturation

104

USE IMPROVE EVANGELIZE

Categories, cont.
● Disk

– Analyses I/O activity using the io provider from DTrace:
disk I/O patterns, disk I/O activity by process, the seek
size of an I/O operation

– iotop: a top like utility which lists disk I/O events by
processes

– iosnoop: a disk I/O trace event application. The utility
will report UID, PID, filename regarding for a I/O
operation

– bitesize.d: analyse disk I/O size by process

– seeksize.d: analyses the disk I/O seek size by
identifying what sort I/O operation the process is
making: sequential or random

105

USE IMPROVE EVANGELIZE

Categories, cont.
● Disk

– iofile.d: prints the total I/O wait times. Used to debug
applications which are waiting for a disk file or resource

– iopattern: computes the percentage of events that
were of a random or sequential nature. Used easily to
identify the type of an I/O operation and the average,
totals numbers

– iopending: prints a plot for the number of pending disk
I/O events. This utility tries to identify the "serialness" or
"parallelness" of the disk behavior

– diskhits: prints the load average, similar to uptime

– iofileb.d: prints a summary of requested disk activity by
pathname, providing totals of the I/O events in bytes

106

USE IMPROVE EVANGELIZE

Categories, cont.
● FS

– Analyses the activity on the file system level: write
cache miss, read file I/O statistics, system calls
read/write

– vopstat: traces the vnode activity

– rfsio.d: provides statistics on the number of reads: the
bytes read from file systems (logical reads) and the
number of bytes read from physical disk

– fspaging.d: used to examine the behavior of each I/O
layer, from the syscall interface to what the disk is doing

– rfileio.d: similar with rfsio.d but reports by file

107

USE IMPROVE EVANGELIZE

Categories, cont.
● Kernel

– Analyses kernel activity: DNLC statistics, CPU time
consumed by kernel, the threads scheduling class and
priority

– dnlcstat: inspector of the Directory Name Lookup
Cache (DNLC)

– cputimes: print CPU time consumed by the kernel,
processes or idle

– cpudist: print CPU time distributions by kernel,
processes or idle

– cswstat.d: prints the context switch count and average

– modcalls.d: an aggregation for kernel function calls by
module

108

USE IMPROVE EVANGELIZE

Categories, cont.
● Kernel

– dnlcps.d: prints DNLC statistics by process

– dnlcsnoop.d: snoops DNLC activity

– kstat_types.d: traces kstat reads

– pridist.d: outputs the process priority distribution. Plots
which process is on the CPUs, and under what priority
it is

– priclass.d: outputs the priority distribution by
scheduling class. Plots a distribution

– whatexec.d: determines the types of files which are
executed by inspected the first four bytes of the
executed file

109

USE IMPROVE EVANGELIZE

Categories, cont.
● Locks

– Analyses lock activity using lockstat provider

– lockbydist.d: lock distribution by process name

– lockbyproc.d: lock time by process name

110

USE IMPROVE EVANGELIZE

Categories, cont.
● Memory

– This category analyses memory and virtual memory
things: virtual memory statistics, page management,
minor faults

– vmstat.d: a vmstat like utility written in D

– vmstat-p.d: a vmstat like utility written in D which does
display what “vmstat -p” does: reporting the paging
information

– xvmstat: a much improved version of vmstat which
does count the following numbers: free RAM, virtual
memory free, major faults, minor faults, scan rate

111

USE IMPROVE EVANGELIZE

Categories, cont.
● Memory

– swapinfo.d: prints virtual memory info, listing all
memory consumers related with virtual memory
including the swap physical devices

– pgpginbypid.d: prints information about pages paged
in by process id

– minfbypid.d: detects the biggest memory consumer
using minor faults, an indication of memory
consumption

112

USE IMPROVE EVANGELIZE

Categories, cont.
● Network

– These scripts analyse the activity of the network
interfaces and the TCP/IP stack. Some scripts are
using the mib provider. Used to monitor incoming

– icmpstat.d: reports ICMP statistics per second, based
on mib

– tcpstat.d: prints TCP statistics every second, retrieved
from the mib provider: TCP bytes received and sent,
TCP bytes retransmitted

– udpstat.d: prints UDP statistics every second, retrieved
from the mib provider

– tcpsnoop.d: analyses TCP network packets and prints
the responsible PID and UID. Useful to detect which
processes are causing TCP traffic

113

USE IMPROVE EVANGELIZE

Categories, cont.
● Network

– connections: prints the inbound TCP connections. This
displays the PID and command name of the processes
accepting connections

– tcptop: display top TCP network packets by process. It
can help identify which processes are causing TCP
traffic

– tcpwdist.d: measures the size of writes from
applications to the TCP level. It can help identify which
process is creating network traffic

114

USE IMPROVE EVANGELIZE

Categories, cont.
● Process

– Analyses process activity: system calls/process, bytes
written or read by process, files opened by process,

– sampleproc: inspect how much CPU the application is
using

– threaded.d: see how well a multithreaded application
uses its threads

– writebytes.d: how many bytes are written by process

– readbytes.d: how many bytes are read by process

– kill.d: a kill inspector. What how signals are send to
what applications

– newproc.d: snoop new processes as they are
executed

115

USE IMPROVE EVANGELIZE

Categories, cont.
● Process

– syscallbyproc.d & syscallbypid.d: system calls by
process or by PID

– filebyproc.d: files opened by process

– fddist: a file descriptor reporter, used to print
distributions for read and write events by file descriptor,
by process. Used to determine which file descriptor a
process is doing the most I/O with

– pathopens.d: prints a count of the number of times
files have been successfully opened

– rwbypid.d: reports the no. of read/writes calls by PID

– rwbytype.d: identifies the vnode type of read/write
activity - whether that is for regular files, sockets,
character special devices

116

USE IMPROVE EVANGELIZE

Categories, cont.
● Process

– sigdist.d: prints the number of signals received by
process and the signal number

– topsysproc: a report utility listing top number of system
calls by process

– pfilestat: prints I/O statistics for each file descriptor
within a process. Very useful for debug certain
processes

– stacksize.d: measures the stack size for running
threads

– crash.d: reports about crashed applications. Useful to
identify the last seconds of a crashed application

– shortlived.d: snoops the short life activity of some
processes

117

USE IMPROVE EVANGELIZE

Categories, cont.
● System

– Used to measure system wide activity

– uname-a.d: simulates 'uname -a' in D

– syscallbysysc.d: reports a total on the number od
system calls on the system

– sar-c.d: reports system calls usage similar to 'sar -c'

– topsyscall: prints a report of the top system calls on
the system

118

USE IMPROVE EVANGELIZE

The toolkit: DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit Elements
● Categories
● Free your mind
● Real Examples

119

USE IMPROVE EVANGELIZE

Free your mind
● A new mentality when debugging and observe

with DTrace
● See the entire system
● Discover certain locations you want to

investigate and look
● Place probes there, where are you interested
● Wait and see when the probes are executing
● Observe these locations by discovering who,

how and when are accessed
● Gather the results by building a report

120

USE IMPROVE EVANGELIZE

Free your mind, cont.
● Using DTrace does not mean you should not

use anymore: vmstat, iostat, mpstat, etc.
● Try to understand every monitoring tool
● You don't have to do everything using

DTrace...e.g.: memory leaks use the best tool:
libumem, dbx

● Solaris has a very rich support for monitoring
and observability. Try to understand each tool
and what is good for: memory, disk, network,
cpu, tracing, process monitoring and debug,
kernel debug

121

USE IMPROVE EVANGELIZE

The toolkit: DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit Elements
● Categories
● Free your mind
● Real Examples

122

USE IMPROVE EVANGELIZE

1.High System Calls
● A case where vmstat 1 reports a high number

of system calls
● What to do ?
● Count the total number of system calls
● Use a simple DTrace aggregation to find out

what application are responsible for that
● Think to enhance the aggregation for a better

reporting or better...
● Use DTT utilities to find out what is going on,

getting as well a nice report

123

USE IMPROVE EVANGELIZE

1.High System Calls, cont.

124

USE IMPROVE EVANGELIZE

1.High System Calls, cont.
● Start a simple aggregation:
$ dtrace -n 'syscall:::entry{@[execname] =
count();}'

● Select the top consumer and start aggregating
again:
$ dtrace -n
'syscall:::entry/execname==”your-app”/
{@[probefunc] = count();}'

● Count the number of system calls globally:
$ dtrace -n 'syscall:::entry{@[probefunc]
= count();}'

● Better run topsysproc from Proc Category

125

USE IMPROVE EVANGELIZE

1.High System Calls, cont.

126

USE IMPROVE EVANGELIZE

1.High System Calls, cont.

● Conclusions:
– Not able to see who does all those system calls using

basic utilities: vmstat, iostat, prstat

– Easy to detect and get the report about the top system
calls consumers using DTT utility: topsysproc

127

USE IMPROVE EVANGELIZE

2.High CPU Utilisation
● There is a high CPU utilisation under the

system without any sign who is generating that
● What to do ?
● Does it help to run: prstat, mpstat, vmstat,

iostat ?
● Solve the problem by using: topsysproc, and

execsnoop from DTT

128

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● The output from vmstat 1:

129

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● The output from mpstat 1:

130

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● The output from prstat -a:

131

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● Run topsysproc:

132

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● Run execsnoop:

133

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.

● Conclusions:
– A high CPU utilisation was detected by vmstat and

prstat. However the CPU consumption was not easy
related to any process on the system

– Using DTT utilities: topsysproc and execsnoop the real
problem was very easily found and the process/owner
generating all the load was easy identified

134

USE IMPROVE EVANGELIZE

3.High Cross-Calls
● It has been detected on a multiprocessor

server a high number of inter-processor cross-
calls per second. This was discovered using
mpstat

● Inter-processor cross-calls is a number
indicating how often CPUs are sending the
work from one to another. A clear indication of
overhead

● Investigate using mpstat and see if it is easy to
find out who generates all these cross-calls

● Solve the problem by using: xcallsbypid.d from
DTT Cpu category

135

USE IMPROVE EVANGELIZE

3.High Cross-Calls, cont.
● mpstat reports:

136

USE IMPROVE EVANGELIZE

3.High Cross-Calls, cont.
● Run xcallsbypid.d from Cpu category:

137

USE IMPROVE EVANGELIZE

3.High Cross-Calls, cont.

● Conclusions:
– Solaris's mpstat was used to identify the high xcalls,

however mpstat was not reporting on who was
generating that big number

– Very easy to identify the process/application which was
generating lots of cross calls directly using DTT utility:
xcallsbypid.d

138

USE IMPROVE EVANGELIZE

4.Network Connections
● The network status utility netstat displays a

status of all network connections on a system
● With the current tools there is no easy way to

find out and co-relate a network connection
with a process or the owner of it

● Extra tools like lsof can list what connections
were made and by who

● What about incoming connections ?
● Solve the problem by using: tcptop, tcpsnoop

and connections utilities from DTT

139

USE IMPROVE EVANGELIZE

4.Network Connections, cont.
● Under Net category execute: tcpsnoop

140

USE IMPROVE EVANGELIZE

4.Network Connections, cont.
● To display top network packets run tcptop:

141

USE IMPROVE EVANGELIZE

4.Network Connections, cont.
● To monitor and check the incoming

connections run connections:

142

USE IMPROVE EVANGELIZE

4.Network Connections, cont.

● Conclusions:
– Not very easy to relate network connections to

processes on the system or list the top of connections

– Net category has a lot of scripts which can easily help
like: tcpsnoop, tcptop and connections

143

USE IMPROVE EVANGELIZE

5.Disk Utilisation
● Disk utilisation can be monitored using iostat –

but to co-relate the utilisation with a process is
a hard mission

● There are tools to check CPU usage by
process but there are no tools to check disk
I/O by process

● The old good friend: iostat -xnmp
● I/O type: reading iostat data a SysAdmin can

describe if the I/O is sequential or random

144

USE IMPROVE EVANGELIZE

5.Disk Utilisation, cont.
● It is important to know what type of I/O there

is: sequential or random
● How can you list what processes are

generating I/O, or list disk events or how much
a process is using the disk (size of the disk
event or the service time of the disk events) ?

● Easily use the following DTT scripts: iotop,
iosnoop from DTT root directory

145

USE IMPROVE EVANGELIZE

5.Disk Utilisation, cont.
● One Liner says:

146

USE IMPROVE EVANGELIZE

5.Disk Utilisation, cont.
● Run iotop:

147

USE IMPROVE EVANGELIZE

5.Disk Utilisation, cont.
● Run now iosnoop:

148

USE IMPROVE EVANGELIZE

5.Disk Utilisation, cont.
● How much the process reads...use bitesize.d:

149

USE IMPROVE EVANGELIZE

5.Disk Utilisation, cont.
● Look for seek distance of the disk events. Run

seeksize.d to understand if the I/O is
sequential or not:

150

USE IMPROVE EVANGELIZE

5.Disk Utilisation, cont.
● Other important DTT utilities used to measure

and analyse disk I/O events
● rwsnoop: snoops the read/write operations
● rwtop: used to display the top read/write

operations by process id
● opensnoop: used to snoop what files are being

open and by who. Very easy to discover what
processes are opening what files

151

USE IMPROVE EVANGELIZE

5.Disk Utilisation, cont.
● rwtop and opensnoop:

152

USE IMPROVE EVANGELIZE

Agenda - Day 2
● The toolkit: DTraceToolkit

- An introduction to DTraceToolkit

- How to think and use the toolkit

- Real Examples

● DTrace and Java
● DTrace Community

- The DTT Team

- OpenSolaris and DTrace books

● Future

153

USE IMPROVE EVANGELIZE

DTrace and Java
● DTrace can be used to debug and observe

Java applications
● Easy to start: use jstack(), to display the Java

activity as a stack backtrace. jstack() based on
ustack()

● Useful to understand the I/O and scheduling
caused by your Java application

● Java 5: VM agents, shared libraries which are
dynamically loaded when the VM starts

● Java 6, Mustang, introduces two new
providers: hotspot, hotspot_jni

154

USE IMPROVE EVANGELIZE

DTrace and Java, cont.
● jstack()
● The simplest form to record a stack trace from

a Java application
● Delivered already with DTrace framework:

$ dtrace -n 'syscall:::entry/pid==xxx/
{jstack(40);}'

$ dtrace -n 'syscall:::entry/pid==xxx/
{@[jstack(40) = count();}'

155

USE IMPROVE EVANGELIZE

DTrace and Java, cont.

156

USE IMPROVE EVANGELIZE

DTrace and Java, cont.
● VM Agents

– Adding probes using a VM agent

– Shared libraries which needs to be loaded when the VM
starts

– Java 1.4.2: using the dvmpi agent

– Java 5: the dvmti agent

– Download from:
https://solaris10-dtrace-vm-agents.dev.java.net/

https://solaris10-dtrace-vm-agents.dev.java.net/

157

USE IMPROVE EVANGELIZE

DTrace and Java, cont.
● Java 6, Mustang

– Added two new providers: hotspot and hotspot_jni

– Using these providers it is now possible to collect data
from your Java applications

– Hotspot_jni: probes related with Java Native Interface

– Hotspot provider:

VM Probes: Initialisation and Shutdown
Thread statistics Probes
Class loading and unloading Probes
Garbage Collection Probes
Method Compilation Probes

158

USE IMPROVE EVANGELIZE

Agenda - Day 2
● The toolkit: DTraceToolkit

- An introduction to DTraceToolkit

- How to think and use the toolkit

- Real Examples

● DTrace and Java
● DTrace Community

- The DTT Team

- OpenSolaris and DTrace books

● Future

159

USE IMPROVE EVANGELIZE

DTrace Community
● DTT Team

– Central Maintainer

Brendan Gregg, brendan.gregg@tpg.com.au
– Bug fixes

Brendan Gregg, Stefan Parvu

– Testing and documentation

Brendan Gregg, James Dickens, Ryan Matteson, Stefan Parvu
– Ideas, technical advice

Ben Rockwood, David Rubio, Nathan Kroenert
– Internals DTrace engineers

Adam Leventhal, Bryan Cantrill, Mike Shapiro

mailto:brendan.gregg@tpg.com.au

160

USE IMPROVE EVANGELIZE

DTrace Community, cont.
● Solaris Internals 2nd

– an update to Solaris Internals, for Solaris 10 and
OpenSolaris. It covers Virtual Memory, File systems,
Zones, Resource Management, Process Rights etc (all
the good stuff in S10). This book is about 1100 pages

● New Solaris Performance and Tools !
– aimed at Administrators to learn about performance and

debugging. It's basically the book to read to understand
and learn DTrace, MDB and the Solaris Performance
tools, and a methodology for performance observability
and debugging. This book is about 550 pages

161

USE IMPROVE EVANGELIZE

DTrace Community, cont.
● Build around OpenSolaris community
● Available under www.opensolaris.org

– The main page:

http://www.opensolaris.org/os/community/dtrace/

IRC on irc.freenode.net channels: #opensolaris, #dtrace

● The leaders:
– Bryan M. Cantrill

– Adam H. Leventhal

– Mike Shapiro

– Brendan Gregg

● Working with other communities

http://www.opensolaris.org/
http://www.opensolaris.org/os/community/dtrace/

162

USE IMPROVE EVANGELIZE

DTrace Community, cont.
● Jim Mauro and Richard McDougall: Solaris

Internals
– www.solarisinternals.com

● Lots of folks:
– http://www.opensolaris.org/os/community/dtrace/observers/

● How can you help ? Use, Improve and Use, Improve and
EvangelizeEvangelize

http://www.solarisinternals.com/
http://www.opensolaris.org/os/community/dtrace/observers/

163

USE IMPROVE EVANGELIZE

Agenda - Day 2
● The toolkit: DTraceToolkit

- An introduction to DTraceToolkit

- How to think and use the toolkit

- Real Examples

● DTrace and Java
● DTrace Community

- The DTT Team

- OpenSolaris and DTrace books

● Future

164

USE IMPROVE EVANGELIZE

Future
● Visualization tools
● Integration with Java 6
● New providers: Apache, Sun Java System

Webserver
● DTrace and Zones: support already in Solaris

Express builds
● Better documentation and more scripts
● DTrace and other operating systems:

– MacOSX Leopard

– FreeBSD

165

USE IMPROVE EVANGELIZE

Appendix, License
Public Documentation License Notice

The contents of this Documentation are subject to the Public Documentation
License Version 1.01 (the "License"); you may only use this
Documentation if you comply with the terms of this License. A copy of the
License is available at http://www.opensolaris.org/os/licensing/pdl.

The Original Documentation is DTrace and DTraceToolkit . The Initial Writer
of the Original Documentation is Stefan Parvu Copyright © 2007. All Rights
Reserved. Initial Writer contact(s): stefanparvu14@yahoo.com.

http://www.opensolaris.org/os/licensing/pdl

USE IMPROVE EVANGELIZE

Thank you!

Stefan Parvu
System Administrator
stefan.parvu@sun.com
stefanparvu14@yahoo.com
http://stefanparvu.blogspot.com

“open” artwork and icons by chandan:
http://blogs.sun.com/chandan

http://blogs.sun.com/chandan

