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A Brief Introduction to Applications of Linear Algebra 
By James Derry 

 
 
 

�when the chips are down we close the office door and compute with matrices like fury. 
-- Irving Kaplansky, from Paul Halmos: Celebrating 50 Years of Mathematics 

 
 
 
We�ve written this chapter as a set of applications for a matrix calculator for the user who has downloaded & 
installed MtrxCal onto a Palm for the first time, but may not know what to do with it. MtrxCal, especially 
designed for the palm platform by ADACS LLC, can be downloaded from http://www.adacs.com/ 
 
Maybe you don't know what good MtrxCal is because you're new to linear algebra or because putting your 
knowledge of linear algebra to practical use has so far escaped you. This chapter intends to briefly introduce 
applications of linear algebra that are practical to run on MtrxCal. If there�s any theory in this chapter, it�s 
accidental (and serves as a yet briefer introduction to linear algebra). 
 
Let�s start with the design philosophy behind the calculator. MtrxCal is to linear algebra what CplxCalPro is 
to algebra and complex numbers: it does operations (like addition, subtraction, multiplication, and division) 
on data objects (like matrices or complex numbers), relieving you of the grunt work. You enter the right 
data in the right order, you get the right result.1 
 
MtrxCal was designed to be highly compatible with MatLab, math software that's used by scientists and 
engineers. MatLab uses matrices and arrays to do all its computations. This means that a solution you 
develop on MtrxCal should run on MatLab with few if any modifications. 
 
Because MtrxCal was written to run on Palm handheld devices, it makes the perfect calculator on which to 
run modest-size problems that yield solutions more easily to a linear algebra approach than to an algebra 
one.2 Look these applications over to see what we�re talking about: 
 

                                                 
1 CALCULATORS DO NOT RELIEVE YOU OF THINKING! Yes, you enter a formula you see in a textbook into a calculator in the 
right order, and you get the right answer; but so what? For those of you who are using our calculators in the classroom, a caveat: 
calculators like MtrxCal and CplxCalPro are aids intended to shorten the time you need to solve a problem, or to make a concept clear 
(as you might do by graphing the output), or to double-check your answers. 
 
2 NOT ALL LINEAR ALGEBRA PROBLEMS ARE DIRECTLY SOLVABLE ON MTRXCAL. This is an important warning that 
some who work with linear algebra might consider superfluous. MtrxCal is intended strictly for numerical analyses. Many lin alg 
textbooks consider parametrized solutions for systems of linear equations (that is, problems in which one or more variables are 
expressed in terms of other variables) in their first chapter. Solving variables in terms of variables is beyond the current version of 
MtrxCal. This means that the function A\b, which solves systems of linear equations, works only for square matrices; that is, in systems 
in which the number of equations equals the number of variables. When using this guide to see how to solve your own problems, please 
check the REQUIRES: entry on the problems you�re considering in this guide to ensure can be solved on our calculator. If your 
problem doesn�t meet the requirement to solve on MtrxCal, please check the appendix at the back of this guide for suggestions on how 
to proceed.  
 

http://www.adacs.com/


Derry/A Brief Introduction to Applications of Linear Algebra/2 
2002-12-12 12:21 

Geometry 
 
Sometimes a picture is worth a thousand words. In linear algebra, coordinate systems like the (x,y) ones 
that we draw our geometry problems in and the (x,y,z) ones that 3D graphics are rendered in are called 
vector spaces. With MtrxCal we can visualize matrix operations by rendering them as graphics in a 2D 
vector space. In this section we shall investigate matrix operations upon graphics objects. We begin by 
learning how MtrxCal creates graphics. We shall do this by drawing a circle, then analyzing what we have 
done. We start with a circle because it is easy to draw on MtrxCal. 
 
 

 

 
Figure 1 

 

 
Figure 2 

 
 

 
Figure 3 

 

MtrxCal was designed to render angular measurements in radians, and to plot 
complex numbers as points in 2-space, where the real part is plotted as the x-
coordinate and the imaginary part as the y-coordinate. Using z = cos θ + j sin 
θ, where θ = the angular measurement in radians and j denotes the imaginary 
part of the complex number, plot(z) on MtrxCal will plot a unit circle (radius=1). 
Let�s try it: 
 
 

1. Turn on MtrxCal and go to the matrix keyboard layout (if you don�t 
already see the layout show in fig. 1, press menu, keys, matrix) 
 

2. Enter these lines on MtrxCal: 
theta=0:.1:2*pi; 
z=(cos(theta)+j*sin(theta)); 
plot(z) 
 

3. Press EXE: 
 
We end each line whose result we don�t want to see with a semicolon. 
 
MtrxCal renders the circle and automatically scales the plot. Tap the screen to 
return to the matrix keyboard layout. The first line reads theta=0:.1:2*pi; If we 
read this line aloud, we might say, �For theta, generate values from 0 to 2pi, 
incrementing by .1.� So the first line creates 63 values: 0, .1, .2, .3,�6.0, 6.1, 
6.2. Each value is then plugged into our equation for z, and the output is a one-
dimensional array holding the 63 results of the calculation 
(cos(theta)+j*sin(theta)). That array is z. We can see this for ourselves if we 
remove the semicolon from the end of the third line and delete the last line, then 
press EXE. Now MtrxCal displays the array of complex numbers from which it 
plotted the circle. If we wish to know the size of the array, we can replace the 
semicolon on line three and write size(z) on the last line. size() takes a matrix 
as its argument and returns a row array whose first element is the number of 
rows in the matrix and whose second element is the number of columns. size(z) 
in this instance returns [1 63]. 
 
Before we manipulate our unit circle with a transformation matrix, let�s change 
the increment value of theta to 1, like this: theta=0:1:2*pi; and see what 
happens when we press EXE: 
 
The result is shown in figure 3. 
 
From what we know of how MtrxCal plots, this shouldn�t be so surprising. size(z) 
returns [1 7], which as we know means that seven values are generated from 
theta=0:1:2*pi, which in turn generate seven (x,y) pairs from 
(cos(theta)+j*sin(theta)); and these points get plotted. MtrxCal then connects 
each sequential pair of points with a line segment during the plotting. This 
knowledge suggests how we might plot other graphics objects. We are going to 
pick up the thread of this idea very shortly. 
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Figure 4 

Let�s manipulate our unit circle with matrices and plot the results so we can see 
how the matrices modify its values. We refer to each manipulation matrix as a 
transformation matrix T. In 2-space a transformation matrix T is a 2x2 matrix, 
and we transform our graphics object by multiplying its x-, y-coordinates with T in 
the form M=T*b, where b is the column array  . On MtrxCal we 

shall add some lines and modify one so that we can manipulate our circle, thus: 






 −

−
coordinatey
coordinatex

theta=0:.1:2*pi; 
z=(cos(theta)+j*sin(theta)); 
T=[1 0;0 1];b=[real(z);imag(z)]; 
A=T*b; 
plot(A) 
 

Note on line 3 our transformation matrix T and column array b. T= . 

 









10
01

A square matrix in which all entries on the diagonal = 1 is called an identity 
matrix. In b, we use the functions real() and imag() to put the x- and y-values 
from z into our column array. Finally, we plot(A). 
Press EXE: 
 
No change! Multiplying a value by the identity matrix yields that value, just as 
multiplying a value by identity over multiplication (otherwise known as 1) yields 
that value. But to work with other graphics objects, we want to understand what 
MtrxCal is doing, line by line. We already grasp what�s going on on the first two 
lines. Is b really a column array? Let�s replace the last line with size(b) and press 
EXE. size(b) returns [2 63]. Row one holds the x-coordinate values and row 2 
holds the y-coordinate values. b is not a column vector though we can think of it 
as 63 column vectors; it�s convenient if we do because that is how MtrxCal uses 
it. If we replace the last line with size(A) and press EXE. size(A) returns [2 
63]. So MtrxCal takes each (x,y) pair in b, multiplies it with our matrix T, and 
outputs the results into another 2x63 matrix. 
 

 
 
 
 
 

 
Figure 5 

Back to plotting other graphics objects. If, for example, we want to plot a 
triangle, you might see how we can do so with a 2x4 matrix that holds our (x,y) 
pairs defining the vertices of the triangle (what? 4 vertices for a triangle? no. be 
patient. we'll explain ourselves in a moment.). This matrix will be b and should 
be thought of as 4 column arrays. Let�s define the vertices of our triangle as (x,y) 
pairs (0,0),(1,1),(1,0). But remember: MtrxCal draws line segments between 
points while it plots those points. If we plotted from a 2x3 matrix using these 
pairs, we�d get a triangle that�s missing its third leg. So we repeat the first pair at 
the end, and we get: 
b=[0 1 1 0;0 1 0 0]; X-coordinates are in the first row, y-coordinates in the 
second one. Replace b=[real(z);imag(z)]; with b=[0 1 1 0;0 1 0 0]; and 
press EXE: (fig. 5) 
 
Beautiful, but too symmetric for our purposes. Let�s use a scalene triangle, and 
let�s enter the (x,y) pairs in a manner that�s easier for us to track (we want an 
easier way to enter (x,y) pairs in case we want to build other graphics objects 
later).  
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Figure 6 

 
 
 
We�ll work with (x,y) pairs (5,-1),(3 6),(-1 1). Let�s enter each (x,y) pair on a 
row. Once we�ve built our matrix b, we�ll transpose it so it�ll be in the proper 
form: b=[5 -1;3 6;-1 1;5 -1]; b=b'; The result is: (fig. 6) 

 
 
Now we shall consider how changing values in the transformation matrix changes our circle and our triangle.  
 
 
 

Contractions, Dilations 

 
 To dilate or contract the object, we use the transformation matrix 

















y
x

r
r

*
0

0
, where r > 1 yields dilation and 0 < r < 1 yields contraction. Let�s define r on the first line, 

and change our transformation matrix, thus: 
 
 

 
Figure 7 

 
 

 
Figure 8 

 

Circle 
 
 
r=1; 
theta=0:.1:2*pi; 
z=(cos(theta)+j*sin(theta)); 
T=[r 0;0 r]; 
b=[real(z);imag(z)]; 
A=T*b; 
plot(A) 
 
 
 
First we do a contraction, set r=.5, and press EXE: (Fig. 7) 
 
Next we do a dilation, set r=3, and press EXE: (Fig. 8) 
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Figure 9 

 

 
Figure 10 

Triangle  
r=1; T=[r 0;0 r]; 
b=[5 -1;3 6;-1 1;5 -1]; b=b'; 
A=T*b; 
plot(A) 
 
 
First we do a contraction, set r=.5, and press EXE: (Fig. 9) 
 
Next we do a dilation, set r=3, and press EXE: (Fig. 10) 
 
 

 
 
 

Translation, displacement by amount (u,v): 

 
To demonstrate reflection in the x-axis and reflection in the y-axis, we�ll look now at how to translate our 

circle. The operation is an array addition, . We�ll remove our transformation matrix, and add x-

displacement u and y-displacement v and give them values 3,5, thus: 









+








v
u

y
x

 
 
 

 
Figure 11 

 
Circle 
 
 
u=3; v=5; 
theta=0:.1:2*pi; 
z=(cos(theta)+j*sin(theta)); 
b=[real(z)+u;imag(z)+v]; 
plot(b) 

 

 
Figure 12 

Triangle 
 
 
u=3; v=5; 
b=[5+u -1+v;3+u 6+v;-1+u 1+v;5+u -1+v]; b=b'; 
plot(b) 
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Reflection in x- & y-axis 

To reflect our circle in the x-axis, we use the transformation matrix , while to reflect our circle in 

the y-axis, we use the transformation matrix .  

 









−10
01








−
10
01

Now to MtrxCal. We add our transformation matrix T to reflect in the x-axis, multiply it by b, and plot the 
result: 
 
Circle 
theta=0:.1:2*pi; u=3;v=5; 
z=(cos(theta)+j*sin(theta)); 
b=[real(z)+u;imag(z)+v]; 
T=[1 0;0 -1]; 
A=T*b; 
plot(A) 

Translated Reflected on x-axis Reflected on y-axis 

 
Figure 13 

 
Figure 14 

 
Figure 15 

 
 
Triangle 
u=3;v=5; 
b=[5+u -1+v;3+u 6+v;-1+u 1+v;5+u -1+v]; b=b'; 
T=[1 0;0 -1]; 
A=T*b; 
plot(A) 

Translated 

 
Figure 16 

Reflected on x-axis 

 
Figure 17 

Reflected on y-axis 

 
Figure 18 

 
 

Transformation matrix T  
So far our investigations concerning the transformation matrix have been confined to the diagonal. Now we 
ask what happens when we change the other values. Let�s construct transformation matrix T: 









10
5.01

and see what it does to our circle and triangle:
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Circle Triangle 

theta=0:.1:2*pi; 
z=(cos(theta)+j*sin(theta)); 
b=[real(z);imag(z)]; 
T=[1 .5;0 1]; 
A=T*b; 
plot(A) 

T=[1 .5;0 1]; 
b=[5 -1;3 6;-1 1;5 -1]; b=b'; 
A=T*b; 
plot(A) 

Before 

 
Figure 19 

After 

 
Figure 20 

Before 

 
Figure 21 

After 

 
Figure 22 

 
This transformation is called a shear along the x-axis of ½ with respect to the y-coordinate. That is, (x,y) 
after the transformation becomes 
 (x+½y, y). 
 

Now let�s construct transformation matrix T: and see what it does to our circle and triangle: 







15.0
01

 
 
 
Circle Triangle 

theta=0:.1:2*pi; 
z=(cos(theta)+j*sin(theta)); 
b=[real(z);imag(z)]; 
T=[1 0;0.5 1]; 
A=T*b; 
plot(A) 

T=[1 0;0.5 1]; 
b=[5 -1;3 6;-1 1;5 -1]; b=b'; 
A=T*b; 
plot(A) 

Before 

 
Figure 23 

After 

Figure 24 

Before 

Figure 25 

After 

 
Figure 26 

This transformation is called a shear along the y-axis of ½ with respect to the x-coordinate. That is, (x,y) 
after the transformation becomes (x,½x+y). 
 



Derry/A Brief Introduction to Applications of Linear Algebra/8 
2002-12-12 12:21 

Rotation: 

 
To rotate our objects, we use transformation matrix T: 
 








 −
θθ
θθ

cossin
sincos

, where θ = rotation angle. To rotate our triangle by some radian measure a, we set up  

our matrix T: 
 
 
Triangle 
a=1; T=[cos(a) –sin(a);sin(a) cos(a)]; 
b=[5 -1;3 6;-1 1;5 -1]; b=b'; 
A=T*b; 
plot(A) 

Before 

 
Figure 27 

After 

 
Figure 28 

 

Physics 
 
Systems of Linear Equations: Dimensional Analysis 
 
The three basic dimensions of measurement, mass M, length L, and time T, are sufficient to describe the 
mechanical attributes of an object or system of objects.3 In dimensional analysis, we reduce physical 
properties to their basic dimensions to find the interrelationships between them. We shall use MtrxCal to 
quickly solve problems of dimensional analysis. 
 
Example 1.◊ Mersenne�s Law relates frequency of vibration to length, tension, and density of string. The 
relationship can be expressed as: 
frequency = (tension)a(line density)b(length)g x constant 
where a,b, g are exponents we need to find (that is, their values express the interrelationships between the 
physical properties in this formula). 
 

Solution. (Requires: □ matrix) We need to set the problem up in a form that we can use on MtrxCal. First, 
in terms of MLT, the equation  
frequency = (tension)a(line density)b(length)g   becomes: T-1 = (MLT-2)a(ML-1)b(L1)g, where 
time = T 
frequency = T-1 

tension= MLT-2 
line density= ML-1 
length= L1 

                                                 
* Not all physical attributes can be rendered in terms of MLT alone, however. While charge (as in the Coulomb) can be expressed in 
MLT dimensions (for charge, M1/2L3/2T-1), others, like temperature and luminosity, cannot. When such attributes are necessary to a 
dimensional analysis, they become dimensions in that analysis. 
◊ From Fletcher, T.J., Linear Algebra: Through Its Applications, Van Nostrand Reinhold, 1972. p.23-24. 
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Figure 29 

 

 
Figure 30 

 

 
Figure 31 

 

The constant is dimensionless and so need not be considered. To be 
perfectly explicit, we�ll rewrite this equation so that each property is 
expressed in terms of M, L, and T (where one is not a dimension of a 
property, we shall use the identity x0=1 for all x). Thus, 
 
M0L0T-1=(M1L1T-2)a( M1L-1T0)b( M0L1T0)g 

 

Now we consider only the exponents: 
(0 0 -1)=(1 1 -2)a (1 -1 0)b (0 1 0)g 
 
And we set this up as a system of linear equations in the form x=Ab: 
 
































−

−
=

















− γ
β
α

*
010
011
211

1
0
0

 
 
 
Now we solve the problem on MtrxCal: 
 

1. Turn on MtrxCal and go to the matrix keyboard layout (if you 
don�t already see the layout show in fig. 29, press menu, 
keys, matrix) 
 

2. Enter the problem. MtrxCal uses square brackets to enclose 
matrices and arrays, and semicolons within matrices to 
separate rows. On the top line, write A=[1 1 0;1 -1 1;-2 0 
0]; On the second row, write b=[0;0;-1]; On the third row, 
write x=A\b 
 

3. Press EXE: (fig. 31) 
 

We end each line whose result we don�t want to see with a semicolon. 
Because the third line doesn�t end with a semicolon, its result, which is 
what we want, will appear. 

 
x is a column vector that we read from top-to-bottom, so that a=0.5, 
b=-0.5, and g=-1. Substituting into the first equation, we have 
frequency = (tension)1/2(line density)-1/2(length)-1 x constant, which 
solves the problem. 
 

 
 
 
 
 
 
 

Vector Arithmetic: System of Forces 
Mechanics concerns itself with the effect of forces upon a body or system of bodies. When the forces acting 
upon a body or bodies are balanced, the body or bodies either do not move, or move with constant velocity 
(Newton�s First Law of Motion). When unbalanced, the forces accelerate the body or bodies in rotation, in 
translation, or both. 

 

                                                 
 



Derry/A Brief Introduction to Applications of Linear Algebra/10 
2002-12-12 12:21 

 
Figure 32 

 
Figure 33 

 
Figure 34 

An analysis of the system of forces that act upon the body or bodies often 
begins with a diagram of the system. To simplify the analysis, the body or 
bodies are considered a point, the origin of a coordinate system whose 
axes are dimensions in space and whose units of measurement are units 
of force. Vectors that represent the forces acting upon the body or bodies 
are drawn; the direction of a vector is the direction of the force, and the 
length is the magnitude. Once the analysis has taken into account all the 
forces under consideration (many simple problems, for example, neglect 
the rotational forces of our non-inertial Earth-frame), one simply adds up 
all the forces to get a resultant force. 
 
In linear algebra, we render vectors as arrays; the computational part of 
the analysis becomes vector addition. We can use MtrxCal to quickly do 
our calculations. 
 
Example: A puck used in an ice hockey game has a mass of 170 grams. In 
an instant, three players strike the puck. The forces with which they strike 
have magnitude (in Newtons) and direction (in radians) of (10, pi), (25, 
4), and (40, 2*pi) through the puck�s center-of-mass. Consider only 
translation of the puck. If the forces are unbalanced, give the puck�s 
acceleration. 
 
Setup (pencil and paper work): Diagram the system.* To simplify 
understanding the problem, we place the puck�s center-of-mass at the 
origin of a 2-dimensional coordinate system in which a unit equals 5 
Newtons. We shall graph the problem in MtrxCal�s angular coordinate 
system, illustrated in figure 5, where we place the tail of each vector at 
the origin. 
 
The problem with such a diagram is that it doesn�t give us a clear sense of 
what the resultant vector is (though it does show us the forces are 
unbalanced). A clear graphical sense of the direction and magnitude of the 
resultant vector gives us confidence in whether the numerical values for 
direction and magnitude MtrxCal gives us is correct. (If incorrect, we can 
go over how we set the problem up to see if we�ve made some error.) 
 
A more instructive diagram results from drawing the vectors tip-to-tail, 
then drawing the resultant vector from origin to tip of last vector as shown 
in figure 6. 
 
Eyeballing the diagram, we expect a magnitude of ~25 N and direction of 
~5.5 radians. 

                                                 
* Problem-solving is often a matter of making choices. Given the knowns and what is to be solved, as we have here, the challenge is to 
find the steps that take us from the one to the other; ideally, in the fewest number of steps possible. One could argue that there are many 
ways to diagram the system described in the problem; a few of those would be useful in understanding the problem, thereby serving as a 
step towards what is to be solved. Ideally, we want the one that will aid us in setting up the solution in the fewest number of steps.  
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Figure 35 

 

 
Figure 36 

 

Work on MtrxCal: 
 

1. Turn on MtrxCal and go to the matrix keyboard layout 
(if you don�t already see the layout below, press menu, keys, 
matrix) 
 

2. Enter the problem. MtrxCal uses square brackets to enclose 
matrices and arrays, and semicolons within matrices to separate 
rows. On the top line, write mag=[10 25 40]; dir=[pi 4 2*pi]; 
Magnitude and direction are polar coordinates in this system. To 
add the vectors, we need to convert them to rectangular 
coordinates, then sum all the x-values and sum all the y-values. 
On the second row, write rect=[sum(mag.*cos(dir)) 
sum(mag.*sin(dir))] We won�t end the line with a semicolon so 
that the result, which is the resultant vector in x- and y-values, 
will be displayed. To get the puck�s acceleration, we need the 
resultant vector�s magnitude, which means converting our answer 
to polar coordinates. On the third row, write 
polar=[(rect(1)^2+rect(2)^2)^.5 atan(rect(2)/rect(1))] 
 

3. Press EXE: (fig. 36) 
 
So the magnitude is 23 N. Adding the negative radian value to 6.28 (2 pi) 
gives 5.3. Both values are close to our eyeball estimates, giving us 
confidence in our answer. But we aren�t finished. The problem statement 
asks for the puck�s acceleration. We rearrange F=ma to F/m=a. 
23.4 N/.170 Kg =137 m/s2, which solves the problem. 
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Chemistry 
Vector Arithmetic: Balancing Chemical Equations 
 
The section discusses considering a chemical equation as a system of vectors.* Our intent is to show you 
how to use MtrxCal to double-check work done by hand. This section and the next, in which we consider 
balancing equations through systems of linear equations, form a unit. 
 
Conceptually, the constituents on either side of a chemical equation can be thought of as vectors. Rendered 
as such, these constituents (molecules, most of the time) can be manipulated with vector arithmetic. To do 
this, we must analyze the constituents further, into their component parts, which are called species. 
Let�s look at a simple equation to see what I�m talking about: NH3 + O2 = NO + H2O. This equation has left-
hand side, NH3 + O2, and a right-hand side, NO + H2O. The left-hand side (LHS) has two constituents, NH3 

and O2; the right-hand side (RHS) also has two constituents, NO and H2O. Each constituent has a scalar, a 
number that it is multiplied by in the balanced equation; in fact, a chemical equation is considered balanced 
when the scalars are found. Scalars need not be cardinal (counting numbers, 1, 2, 3, etc) although by 
convention balanced equations are represented with the smallest possible cardinals as scalars. To be 
explicit, we rewrite the equation as αNH3 + βO2 = γNO + δH2O, with Greek letters as scalar variables. Finally, we 
note that the equation has three species: N, H, and O. 
The last paragraph illustrates by example all the vocabulary we need when talking about how to transform a 
chemical equation into a system of vectors. Now let�s work an example. 
 

Example: Balance NH3 + O2 → NO + H2O. 
Use MtrxCal to double-check work done by hand. 
 
Setup (pencil and paper work): Rewrite NH3 + O2 → NO + H2O as αNH3 + βO2 = γNO + δH2O, making the implied 
scalar variables explicit so that you can track them. Make up a table listing species at the head of columns 
and constituents in the leftmost entry of rows. In each cell for a constituent write how many of the species 
in the column head are present.  
 
The entry for NH3 will look like this: 
 

 N H O 
NH3 1 3 0  

The table will look like this: 
 N H O 
NH3 1 3 0 
O2 0 0 2 
NO 1 0 1 
H2O 0 2 1  

 
 

                                                 
* Based on a suggestion in Fletcher, T.J., Linear Algebra: Through Its Applications, Van Nostrand Reinhold, 1972. p.26 
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Figure 37 

 

 
Figure 38 

 
Figure 39 

The numerical entries for each constituent make up its vector. The vector 
representing NH3 is [1 3 0], the vector representing O2 is [0 0 2], the vector 
representing NO is [1 0 1], and H2O is [0 2 1]. We prefix each vector with its 
scalar, rewriting the chemical equation as α[1 3 0] + β[0 0 2] = γ [1 0 1]  + δ [0 2 1].. 
This equation is considered balanced when the sum of constituents on the left-
hand side equals the sum of constituents on the right-hand side. 
 
 
Work on MtrxCal:  

1. Turn on MtrxCal and go to the matrix keyboard layout 
(if you don�t already see the layout shown in fig. 37, press menu, 
keys, matrix) 

 
 
2. Enter the problem. MtrxCal uses square brackets to enclose matrices 

and arrays, and semicolons within matrices to separate rows Because 
Greek letters aren�t available, we�ll use capital letters A, B, C, and D as 
our scalar variables, which we enter on the first line and set to 1: 
A=1;B=1;C=1;D=1; 
On the second line we write out the left-hand side of the equation:  
lhs=[1 3 0].*A + [0 0 2].*B 
On the third line we write out the right-hand side of the equation: 
rhs=[1 0 1].*C+[0 2 1].*D 
On the last line we write a test for equivalence: 
lhs==rhs 
 

3. Press EXE: (fig. 39) 
 
 
 
Our test for equivalence shows that the sum of species 1 and 3 are the same on 
the left- and right-hand sides. Solving by hand,* we arrive at 
4NH3 + 5O2 = 4NO + 6H2O. Entering these scalar values on the first line, we 
get ans=1 1 1, meaning that we�ve arrived as scalar values that do balance the 
equation: 

 
 

Example: Balance KMnO4 + HCl → KCl + MnCl2 + Cl2 + H2O. 
Use MtrxCal to double-check work done by hand. 
 
Setup (pencil and paper work): 
Rewrite KMnO4 + HCl → KCl + MnCl2 + Cl2 + H2O as α KMnO4 + β HCl = γ KCl + δ MnCl2 + εCl2 + ζH2O, making the 
implied scalar variables explicit so that you can track them. Make up a table listing species at the head of 
columns and constituents in the leftmost entry of rows. In each cell for a constituent write how many of the 
species in the column head are present. 
 
The entry for NH3 will look like this: 
 

 K Mn O H Cl 
KMnO4 1 1 4 0 0  

The table will look like this: 
 

 K Mn O H Cl 
KMnO4 1 1 4 0 0 
HCl 0 0 0 1 1 
KCl 1 0 0 0 1 
MnCl2 0 1 0 0 2 
Cl2 0 0 0 0 2 
H2O 0 0 1 2 0  

 
 

                                                 
* The problems in the first two examples can be set up as systems of linear equations, which means MtrxCal can solve them. Please 
check the first example of Chemistry: Systems of Linear Equations: Chemical Stoichiometry to see how to do this. 
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Figure 40 

 

 
Figure 41 

 

 
Figure 42 

The numerical entries for each constituent make up its vector. We prefix 
each vector with its scalar, rewriting the chemical equation as α [1 1 4 0 0] + β 
[0 0 0 1 1] = γ [1 0 0 0 1] + δ [0 1 0 0 2] + ε [0 0 0 0 2] + ζ [0 0 1 2 0]. This equation is 
considered balanced when the sum of constituents on the left-hand side 
equals the sum of constituents on the right-hand side. 
 
Work on MtrxCal: 
 

1. Turn on MtrxCal and go to the matrix keyboard layout (if you don�t 
already see the layout shown in fig.40, press menu, keys, matrix) 
 

2. Enter the problem. MtrxCal uses square brackets to enclose 
matrices and arrays, and semicolons within matrices to separate 
rows Because Greek letters aren�t available, we�ll use capital letters 
A, B, C, and D as our scalar variables, which we enter on the first 
line and set to 1: A=1;B=1;C=1;D=1;E=1;F=1 
On the second line we write out the left-hand side of the equation: 
lhs=[1 3 0].*A + [0 0 2].*B 
On the third line we write out the right-hand side of the equation: 
rhs=[1 0 1].*C+[0 2 1].*D 
On the last line we write a test for equivalence: lhs==rhs 
 

3. Press EXE: (fig. 42) 
 
 
Our test for equivalence shows that the sum of species 1 and 3 are the same 
on the left- and right-hand sides. 
Solving by hand,* we arrive at 4NH3 + 5O2 = 4NO + 6H2O. Entering these 
scalar values on the first line, we get ans=1 1 1, meaning that we�ve 
arrived as scalar values that do balance the equation: 
 
 

 
 

                                                

 
Systems of Linear Equations: Chemical Stoichiometry∇ 
 
Stoichiometry (from Greek, measure of elements) deals with the balancing of elements or molecules (called 
species) and charges in reactions in a closed system (being in a closed system, the net mass and charge are 
preserved in the reaction: nothing gained, nothing lost). MtrxCal can be used to balance complex chemical 
equations though only for a subset of such equations. Specifically, the requirements are: 

 
* This particular problem can be set up as a system of linear equations, which means MtrxCal can solve it. Please check the first example 
of Chemistry: Systems of Linear Equations: Chemical Stoichiometry to see how to do this. 
 
 
∇ The problems and methods presented in this section come from a series of articles in the The Journal of Chemical Education: 
Kolb,Doris: �Balancing Complex Redox Equations by Inspection�, J. Chem. Educ. 1981, 58, 642. 
Kennedy, John H.: �Balancing Chemical Equations with a Calculator�, J. Chem. Educ. 1982, 59, 523.  
Alberty, Robert A.: �Balancing Complex Chemical Equations Using a Hand-held Calculator�, J. Chem. Educ. 1983,60,102.  
 
The Journal of Chemical Education is online at http://jchemed.chem.wisc.edu. Unfortunately, the articles cited are available in print 
only. 
The interested reader might also want to navigate a browser to http://www.chemical-stoichiometry.net. 

http://jchemed.chem.wisc.edu/
http://www.chemical-stoichiometry.net/
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1. We need a square matrix, which is required for the inversion. This means the number of species 

equals the number of linear equations in the set up. 
 

2. Too many or too few species. Sometimes it is possible to make the number of species equal the 
number of linear equations if we consider a combination of atoms that stay a combination on either 
side of the reaction as one species, instead of considering the atoms as separate species. For 
example, if the hydroxyl radical OH- remains throughout the reaction, the radical can be considered 
a single species. 
 

3. Two elements in constant ratio complicates the problem. If, for example, N and O occur in five 
species only as NO3, the five equations would not be linearly independent, and we could calculate 
the numbers of moles of only four species. The system effectively contains four "elements." 
  

4. Ions. If ions are involved, electrical charge has to be conserved through an additional linear 
equation. 

 
 
OK, now that we know what the requirements are, let�s look at how to use MtrxCal to do stoichiometry. 
 

Example: Balance NH3 + O2 → NO + H2O. 

 
Setup (pencil and paper work): Rewrite NH3 + O2 → NO + H2O as αNH3 + βO2 = γNO + δH2O, making the implied 
scalar variables explicit so that you can track them. Make up a table listing constituents at the head of 
columns and species in the leftmost entry of rows. In each cell for a constituent write how many of the 
species in the leftmost entry of a row are present. 
 
The entry for N will look like this: 
 

 NH3 O2 NO H2O 
N 1 0 1 0 

 
 

The table will look like this: 
 NH3 O2 NO H2O 
N 1 0 1 0 
H 3 0 0 2 
O 0 2 1 1  

 
 
The idea here is to set up αNH3 + βO2 = γNO + δH2O as a system of linear equations that we can solve in the 
form of b=Mx. To create our square matrix, we rearrange the terms, thus: αNH3 + βO2 - γNO = δH2O, then 
substitute column vectors for the constituents they represent, 
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* δγβα  Next, we do 3 steps at one time: first, we redistribute the  

 
negative sign in the γ entry so that the γ is positive while the entries in the column matrix are negative, we 
build our square matrix, set δ=1 and we put the other scalar variables in their own column matrix, 
multiplied by the square matrix. Given that δ=1, the following equation is equivalent to the preceding one: 
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 The problem now can be solved using MtrxCal�s x=M\b function  

 
 



Derry/A Brief Introduction to Applications of Linear Algebra/16 
2002-12-12 12:21 

 
Figure 43 

 
 

 
Figure 44 

Work on MtrxCal: 
 

1. Turn on MtrxCal and go to the matrix keyboard layout (if you don�t 
already see the layout shown in fig.43, press menu, keys, matrix) 
 

2. Enter the problem. MtrxCal uses square brackets to enclose 
matrices and arrays, and semicolons within matrices to separate 
rows. One line at a time, we enter: 
M=[1 0 -1;3 0 0;0 2 -1]; 
b=[0 2 1]'; 
x=M\b 
 

3. Press EXE: (fig. 44) 
 
We read off the column vector as α=0.67, β=0.83, and γ=0.67 (remember, 
δ=1). If our problem asked for us to render the scalar values in moles (M), 
the fractional values would suffice; and we�d be finished. However, by 
convention balanced equations are represented with the smallest possible 
cardinals as scalars. Multiplying each by 6 yields α=4, β=5, γ=4, and δ=6. The 
balanced equation is: 4 NH3 + 5 O2 = 4 NO + 6 H2O. 
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Example: Balance KMnO4 + HCl → KCl + MnCl2 + Cl2 + H2O. 

 
Setup (pencil and paper work): Rewrite KMnO4 + HCl → KCl + MnCl2 + Cl2 + H2O as 
αKMnO4 + βHCl = γKCl + δMnCl2 + εCl2 + ζH2O, making the implied scalar variables explicit so that you can track 
them. Make up a table listing constituents at the head of columns and species in the leftmost entry of rows. 
In each cell for a constituent write how many of the species in the leftmost entry of a row are present. 
 
The entry for N will look like this: 

 KMnO4 HCl KCl MnCl2 Cl2 H2O 
K 1 0 1 0 0 0 

 
 

The table will look like this: 
 KMnO4 HCl KCl MnCl2 Cl2 H2O 
K 1 0 1 0 0 0 
Mn 1 0 0 1 0 0 
O 4 0 0 0 0 1 
H 0 1 0 0 0 2 
Cl 0 1 1 2 2 0  

 
The idea here is to set up αKMnO4 + βHCl = γKCl + δMnCl2 + εCl2 + ζH2O as a system of linear equations that we 
can solve in the form of b=Mx. To create our square matrix, we rearrange the terms, thus: 
αKMnO4 + βHCl - γKCl - δMnCl2 - εCl2 = ζH2O, then substitute column vectors for the constituents they represent, 
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Next, we do 3 steps at one time: first, we redistribute the  

 
negative sign in the γKCl, δMnCl2, and εCl2 entries so that the γ, δ, and ε are positive while the entries in their 
column matrices are negative, we build our square matrix, set ζ=1 and we put the other scalar variables in 
their own column matrix, multiplied by the square matrix. Given that ζ=1, the following equation is 
equivalent to the preceding one: 
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 The problem now can be solved using MtrxCal�s x=M\b function  
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Figure 45 

 
Figure 46 

Work on MtrxCal: 
 

1. Turn on MtrxCal and go to the matrix keyboard layout (if you don�t 
already see the layout shown in fig.45, press menu, keys, matrix) 
 

2. Enter the problem. MtrxCal uses square brackets to enclose 
matrices and arrays, and semicolons within matrices to separate 
rows. One line at a time, we enter: 
M=[1 0 -1 0 0;1 0 0 -1 0;4 0 0 0 0;0 1 0 0 0;0 1 -1 -2 -2]; 
b=[0 0 1 2 0]'; 
x=M\b 
 

3. Press EXE: (fig. 46) 
 
 

We read off the column vector as α=0.25, β=2, and γ=0.25, δ=0.25, and 
ε=0.625 (remember, ζ=1). If our problem asked for us to render the scalar 
values in moles (M), the fractional values would suffice; and we�d be 
finished. However, by convention balanced equations are represented with 
the smallest possible cardinals as scalars. Multiplying each by 8 yields α=2, 
β=16, γ=2, δ=2, ε=5, and ζ=8. The balanced equation is: 
2 KMnO4 + 16 HCl = 2 KCl + 2 MnCl2 + 5 Cl2 + 8 H2O. 

 
 

 

 
 

An alternate method to balancing chemical equations 
 
Our last example introduces an alternate method to balancing chemical equations through systems of linear 
equations.◊  
 
In this method our setup includes establishing an algebraic relationship between the species and their 
scalars in the balanced equation. With this method we shall go one step further than in the earlier examples 
by balancing an ionic equation. We use the following rules as our guide: 
 

Ling’s Rules for Balancing Redox Equations by Inspection 
Step 

1 
Locate any elements that must have the same scalar in the balanced equation, those appearing only 
once on each side of the equation and in equal numbers on both sides. Mark these terms with 
arrows. 

Step 
2 

Locate any elements that appear only once on each side of the equation but have unequal numbers 
of atoms. Balance these elements first. 

Step 
3 

When steps 1 and 2 do not work, look for elements that must be present in a constant ratio on each 
side of the equation, elements appearing only once and in the same compound on one side or the 
other. Balance these elements so as to maintain this ratio on both sides of the equation. 

After applying the three steps above, if the equation still cannot be balanced, use the algebraic method to 
complete the balancing process. Assign letters to whichever scalars remain unknown and determine their 
values by simple algebraic equations.* 

 

Example: Balance Zn + NO3
- + H+ → Zn2+ + NH4

+ + H2O. 

 
Setup (pencil and paper work): Rewrite Zn + NO3

- + H+ = Zn2+ + NH4
+ + H2O as 

αZn + β NO3
- + γ H+ = δ Zn2+ + ε NH4

+ + ζH2O, making the implied scalar variables explicit so that you can track 
them. Make up a table listing scalars at the head of columns and species in the leftmost entry of rows. The 
last row will be charge. Next to the species we write the algebraic expression that relates the scalars in the 
constituents in which the species appears. The algebraic expression shows the proportions required in the 
balanced equation. In the rightmost column we set up our column vector b in the form: first entry equals 1; 
all others equal 0. 

                                                 
◊ This method comes from Kennedy, John H.: �Balancing Chemical Equations with a Calculator�, J. Chem. Educ. 1982, 59, 523.  
* Kolb,Doris. �Balancing Complex Redox Equations by Inspection�, J. Chem. Educ. 1981, 58, 643.   
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Now we work out the algebraic relationships between the scalars: 
Ζn:α = δ, N:β = ε, O:3β = ζ; H: γ = 4 ε + 2 ζ; and charge: -β + γ = 2 δ + ε. 
 
In setting up our square matrix, we rearrange the terms, thus: αZn + β NO3

-  + γ H+ - δ Zn2+ - ε NH4
+ - ζH2O. We�ll 

mark our negative species in our table, to remind us that the species entries in their columns take negative 
values, and we change signs for charge entries in these columns: 
 
We assume α = 1. 
The first two entries will look like this: 

 eqn α β γ −δ −ε −ζ b 
 α = 1 1 0 0 0 0 0 1 
Zn α = δ 1 0 0 1 0 0 0  

Remember, our rightmost column is the column vector b; and following our 
rules, its first entry is 1. The final table will look like this: 

 eqn α β γ −δ −ε −ζ b 
 α = 1 1 0 0 0 0 0 1 
Zn α = δ 1 0 0 -1 0 0 0 
N β = ε 0 1 0 0 -1 0 0 
O 3β = ζ 0 3 0 0 0 -1 0 
H γ = 4ε + 2ζ 0 0 1 0 4 -2 0 
charge γ − β = 2δ + ε 0 -1 1 -2 -1 0 0  

 
 
 
 
We use our table to set up our linear algebra expression: 
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 The problem now can be solved using MtrxCal�s x=M\b function. 

 
 
 

 
Figure 47 

Enter the problem. MtrxCal uses square brackets to enclose matrices and 
arrays, and semicolons within matrices to separate rows. One line at a 
time, we enter: 
 
M=[1 0 0 0 0 0;1 0 0 -1 0 0;0 1 0 0 -1 0 0;0 3 0 0 0 -1;0 0 1 0 -4 -2;0 
-1 1 -2 -1 0]; 
b=[1 0 0 0 0 0]'; 
x=M\b 
then press EXE: 
 
We read off the column vector as α=1, β=0.25, and γ=2.5, δ=-1, ε=0.25, and ζ=0.75. If 
our problem asked for us to render the scalar values in moles (M), the 
fractional values would suffice; and we�d be finished. However, by 
convention balanced equations are represented with the smallest possible 
cardinals as scalars. Multiplying each by 4 yields α=4, β=1, γ=10, δ=4, ε=1, and 
ζ=3. The balanced equation is: 
4 Zn + NO3

- + 10 H+ = 4 Zn2+ + NH4
+ + 3 H2O. 
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Experimental Sciences: 
 
Orthogonal Projections in Inner Product Spaces 
 
The accuracy of data obtained by experiment can be affected by measurement error. When experimental 
data should show a polynomial relationship y=f(x) between two variables, the experimenter must then find 
the curve that best fits the data. A common application of linear algebra to experimental sciences is using 
least squares to fit polynomials to bivariate data. Because our purpose here is more application, less theory, 
we start by talking briefly about the general case for least squares fit of a polynomial, then apply it to 
specific cases of a line and a quadratic. This we hope will lead the reader to understand how to extend the 
method to higher-order polynomials. 
 
The General Case. Given experimental data points (x1, y1), (x2, y2), (x3, y3),� (xn, yn), we wish to fit a 
polynomial of degree m 
y= a0+ a1 x+� am xm 

to these data points. We do so in matrix form with y=Mv, where 
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and a0, a1, a2,� am are the values we seek. 

For practical purposes, we shall replace the values in column 1 of matrix M with ones, since for all 
x, x0=1. Also, the number of columns we need in matrix M depends on the degree of the polynomial. For a 
line, which is of degree 1, we need two columns � the first column of x�s that are all of degree 0, and the 
second of x�s that are all of degree 1. For a quadratic, which is of degree 2, we need three columns � the 
first column of x�s that are all of degree 0, the second of x�s that are all of degree 1; and the third of x�s 
that are all of degree 2. 

For curves in general, we simply extend our observation by analogy: the number of columns we 
need in matrix M equals the degree of the polynomial plus 1. 

The equation we shall use on MtrxCal to get those values is ((M’*M)^-1)*M’*y. It will return a 
unique solution provided that M’*M is invertible; that is, if and only if its determinant is not equal to zero. 
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Least Squares Fitting of Polynomials to Data 

Example 1. Least Squares Fit of a Line: y= mx+b 

Given sample points (1,1), (3,0), (4,2), (7,2), (9,4), and (13,3), find the line of best fit. 
 
 

 
Figure 48 

 
 

 
Figure 49 

 

 
Figure 50 

 
 
Set up (pencil and paper work): None. 
 
Work on MtrxCal: 
 

1. Turn on MtrxCal and go to the matrix keyboard layout (if you don�t 
already see the layout shown in fig.48, press menu, keys, matrix) 
 

2. Input matrix M, create the variable MTM and instantiate it with 
M’*M; get the determinant of MTM. We end each line whose result 
we don�t want to see with a semicolon. Because the third line 
doesn�t end with a semicolon, its result, which is what we want, will 
appear. 
Press EXE 
 

3. Because the determinant of MTM is not zero, a unique solution 
exists. Now enter y; (MTM)^-1*M’*y, and press EXE 

 
 
 
The answer is a column vector that we read from top to bottom. The best fit 
line is y=.471601+.247849x. To graph this line we add three more lines 
x=[0:15]; y1= a(1)+a(2)*x and plot(x,y) As expected the first value is the 
y-value where the line intercepts the y-axis and the second value is the 
slope. Now we read our output as the line intercepting the y-axis at ~.5, or 
1/2, and having a rise/run of ~.25, or ¼. 
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Example 2. Least Squares Fit of a Quadratic: y=a+bx+cx2 

Given sample points (.5,1), (2.5,3), (2,8), (4.5,13), and (5,23), find the line of best fit. 
 

 
Figure 51 

 
 

 
Figure 52 

 
 

 
Figure 53 

Set up (pencil and paper work): on paper, make 5 rows, one for each sample 
point, and divide the rows into 3 columns. Label column one �y�, column two 
�x�, and column three �x2�. In columns one and two, write your sample points� y 
and x values. In column three write the square for each x value. Your table 
should look like this: 
 

Y X X2 

1 .5 .25 
3 2.5 6.25 
8 2 4 
13 4.5 20.25 
23 5 25 

 
 
Work on MtrxCal: 
 

1. Turn on MtrxCal and go to the matrix keyboard layout (if you don�t 
already see the layout as shown in fig.51, press menu, keys, matrix) 
 

2. Input matrix M, create the variable MTM and instantiate it with M’*M; 
get the determinant of MTM. We end each line whose result we don�t 
want to see with a semicolon. Because the third line doesn�t end with a 
semicolon, its result, which is what we want, will appear. 
 

3. Because the determinant of MTM is not zero, a unique solution exists. 
Now enter y; (MTM)^-1*M’*y, and press EXE 

 
 
The answer is a column vector that we read from top to bottom. The best fit 
quadratic is y=2.43-1.21x+.96x2. The phenomenon measured decides the 
meaning of the coefficients. Had our example measured distance displaced (y) 
against time (x) of a falling body, �a� would be the initial displacement at time 
0, �b� would be the initial velocity at time 0; �c� would be ½ of the acceleration 
of gravity. 
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Graph Theory 
 
Matrix Multiplication: Dominance Directed Graph 
 

 
Figure 54 

 
 
 

 
Figure 55 

 
 

 
Figure 56 

A graph, as used in graph theory, is a set of objects (called vertices) and 
the relationship among them (called edges). A standard representation of 
graphs shows vertices as circles and edges as lines connecting the circles. 

 
In a directed graph, the direction by which one can move from vertex to 
vertex is defined; a picture representation uses arrows on the edges to 
show in which direction one can move along edges. 
 
Put another way, the arrows show the direction of flow from one object to 
the next. It is possible for one edge to have �flow� in either direction. In a 
dominance directed graph, however, each pair of vertices is connected by 
an edge, and all edges are one-way (and a second edge connecting two 
vertices and having �flow� in the opposite direction is not permitted!). 

 
Graph theory, in which the properties of graphs are studied and defined by 
proofs and theorems, has proved to have applications in many fields, from 
network flow in vehicular traffic and telecommunications, to the study of 
finite automata, in which each vertex represents the state of  a machine 
and each edge represents a transition from state to state. In our example 
we shall use graph theory to rank little league football teams after a 
season of play.* 
 
Example: We shall consider the season of play as a tournament, with two 
requirements: each team has played each other team exactly once, and no 
game was allowed to end in a tie. The tournament can then be considered 
as a dominance directed graph, in which each team is a vertex, each game 
is an edge, and the arrow shows winner-loser with �flow� going from 
winner to loser. In a 10-team league, this means each vertex is connected 
to the other nine vertices, each connection a single edge, with an arrow on 
the edge going from winner to loser. 

 
 
Set up (pencil and paper work): Instead of drawing this graph, let�s set it up as a matrix. The teams in the 
league are: 
 
Lions Ravens Bengals Eagles Jaguars Bears Vikings Rams Falcons Panthers 
 
We shall create a table in which each team�s win-loss record will fill a row; and keeping the order of the 
teams the same, we shall assign each column to the team played. The result should look like this: 

                                                 
* A much better treatment of graph theory in linear algebra can be found in Rorres, Chris & Anton, Howard, Applications of Linear 
Algebra, 3rd Edition, Wiley & Sons, 1984. Though out-of-print (and that�s a shame: we strongly recommend it), used copies are 
available through amazon marketplace sellers at http://www.amazon.com. 
 

http://www.amazon.com/
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 Lions Ravens Bengals Eagles Jaguars Bears Vikings Rams Falcons Panthers 

Lions 0          
Ravens  0         
Bengals   0        
Eagles    0       
Jaguars     0      
Bears      0     

Vikings       0    
Rams        0   

Falcons         0  
Panthers          0 

 
We fill the diagonal with zeros. (We are making a vertex matrix. Vertex matrices have 2 properties: the 
diagonal entries are zero; all other entries are either 1 or 0.) In our example, this makes sense: a team 
does not play against itself (at least, not in tournament). Now, with the game results in front of us, we fill 
out each row. We enter 1 for a win, and 0 for a loss. The first row looks like this: 
 

 Lions Ravens Bengals Eagles Jaguars Bears Vikings Rams Falcons Panthers 
Lions 0 1 0 0 1 0 1 0 0 1 

 
 
This row reads as: the Lions won against the Ravens, Jaguars, Vikings, and Panthers; and lost against the 
Bengals, Eagles, Bears, Rams, and Falcons. The entire vertex matrix looks like this: 
 

 Lions Ravens Bengals Eagles Jaguars Bears Vikings Rams Falcons Panthers 
Lions 0 1 0 0 1 0 1 0 0 1 

Ravens 0 0 1 1 0 0 1 1 1 0 
Bengals 1 0 0 1 1 0 1 0 1 1 
Eagles 1 0 0 0 1 0 1 0 1 0 
Jaguars 0 1 0 0 0 1 0 1 0 1 
Bears 1 1 1 1 0 0 0 1 0 0 

Vikings 0 0 0 0 1 1 0 1 1 1 
Rams 1 0 1 1 0 0 0 0 0 1 

Falcons 1 0 0 0 1 1 0 1 0 1 
Panthers 0 1 0 1 0 1 0 0 0 0 

 
Let�s mark up this matrix to make a couple of observations. First, we run a red line down the diagonal. 
Second, we run blue lines through the entries perpendicular to the diagonal. (Only enough entries are blue-
lined to make our observations). The result looks like the vertex matrix below: 
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 Lions Ravens Bengals Eagles Jaguars Bears Vikings Rams Falcons Panther 

Lions 

 
0 1 0 0 1 0 1 0 0 1 

Ravens 0 0 1 1 0 0 1 1 1 0 

Bengals 1 0 0 1 1 0 1 0 1 1 

Eagles 1 0 0 0 1 0 1 0 1 0 

Jaguars 0 1 0 0 0 1 0 1 0 1 

Bears 1 1 1 1 0 0 0 1 0 0 

Vikings 0 0 0 0 1 1 0 1 1 1 

Rams 1 0 1 1 0 0 0 0 0 1 

Falcons 1 0 0 0 1 1 0 1 0 1 

Panther 0 1 0 1 0 1 0 0 0 0 

 
Our first observation is a reiteration: the diagonal entries are 0�s. Our second observation allows us to 
double-check our matrix entries: we call an entry in this matrix Eij, and i≠j, then if Eij=1, Eji=0, and if Eij=0, 
Eji=1. Explained in terms of our little league matrix, if the Ravens-Lions entry is 0, the Lions-Ravens entry is 
1; if the Bears-Bengals entry is 1, the Bengals-Bears entry is 0; and so on. 
 
Now that we�ve set up our matrix vertex, we�ll apply the definition of a power vertex to get league rankings. 
The definition says that if we do row sums on A = M + M2, where M is our vertex graph, we�ll get the 
rankings: the greatest row sum will belong to our 1st place team, the 2nd greatest row sum to our 2nd place 
team, etc. 
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Figure 57 

 
 
 

 
Figure 58 

Work on MtrxCal: 
 

1. Turn on MtrxCal and go to the matrix keyboard layout (if you don�t 
already see the layout shown in fig.57, press menu, keys, matrix) 
 

2. Enter the vertex matrix as M=[0 1 0 0 1 0 1 0 0 1;0 0 1 1 0 0 1 
1 1 0;1 0 0 1 1 0 1 0 1 1;1 0 0 0 1 0 1 0 1 0;0 1 0 0 0 1 0 1 0 
1;1 1 1 1 0 0 0 1 0 0;0 0 0 0 1 1 0 1 1 1;1 0 1 1 0 0 0 0 0 1;1 
0 0 0 1 1 0 1 0 1;0 1 0 1 0 1 0 0 0 0]; 
 
On the following lines enter: 
A=M+M*M; 
sum(A') 
We do a sum on the transpose of matrix A since sum() does 
column sums and we need row sums. 
 

3. Press EXE: 
 

According to our results, the Bengals (6-4) place 1st, the Ravens (5-5) 2nd, 
the Bears (5-5) 3rd, the Vikings (5-5) 4th, the Falcons (5-5) 5th, the Eagles 
(4-6) 6th, while the Lions, Jaguars, and Rams (4-6) tie; and the Panthers 
come in last. So how are so many teams ending the season with 5-5 so 
clearly ranked? Remember, our math depends on a dominance directed 
graph: it all depends on who beats whom to set up the hierarchy. 
 
The point here is that eyeballing the win-loss matrix, even doing quick-and-
dirty sums of wins and losses, does not give reliable results 
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