Ollama 是一个开源的本地大语言模型运行框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。 Ollama 支持多种操作系统,包括 macOS、Windows、Linux 以及通过 Docker 容器运行。 Ollama 提供对模型量化的支持,可以显著降低显存要求,使得在普通家用计算机上运行大型模型成为可能。
https://ollama.com
Ollama 教程
Ollama 是一个开源的本地大语言模型运行框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。 Ollama 支持多种操作系统,包括 macOS、Windows、Linux 以及通过 Docker 容器运行。 Ollama 提供对模型量化的支持,可以显著降低显存要求,使得在普通家用计算机上运行大型模型成为可能。
谁适合阅读本教程?Ollama 适用于开发者、研究人员以及对数据隐私有较高要求的用户,它可以帮助用户在本地环境中快速部署和运行大型语言模型,同时提供灵活的定制化选项。 使用 Ollama,我们可以在在本地运行 Llama 3.3、DeepSeek-R1、Phi-4、Mistral、Gemma 2 和其他模型。 学习本教程前你需要了解理解 Docker 镜像和容器的区别,知道如何从 Docker Hub 拉取镜像并运行容器,docker 相关内容参见: Docker 教程。 熟悉命令行工具(如终端或命令提示符)的基本操作,例如文件和目录的创建、删除、移动,以及如何运行脚本和程序。 创建新的模型我们可以使用 ollama create 命令从 Modelfile 创建模型: 实例
- ollama create model <font color="rgb(102, 0, 51)">-of</font> .<b>/</b>Modelfile
复制代码
相关链接
==============================
https://zhuanlan.zhihu.com/p/31897030216
ollamaOllama 是一个开源的大型语言模型服务工具,旨在帮助用户快速在本地运行大模型。通过简单的安装指令,用户可以通过一条命令轻松启动和运行开源的大型语言模型。 它提供了一个简洁易用的命令行界面和服务器,专为构建大型语言模型应用而设计。用户可以轻松下载、运行和管理各种开源 LLM。与传统 LLM 需要复杂配置和强大硬件不同,Ollama 能够让用户在消费级的 PC 上体验 LLM 的强大功能。Ollama 会自动监测本地计算资源,如有 GPU 的条件,会优先使用 GPU 的资源,同时模型的推理速度也更快。如果没有 GPU 条件,直接使用 CPU 资源。 Ollama 极大地简化了在 Docker 容器中部署和管理大型语言模型的过程,使用户能够迅速在本地启动和运行这些模型。注意:运行 7B 模型至少需要 8GB 内存,运行 13B 模型至少需要 16GB 内存,运行 33B 模型至少需要 32GB 内存。
|